精英家教网 > 初中数学 > 题目详情

【题目】阅读:如图1,点P(x,y)在平面直角坐标中,过点P作PA⊥x轴,垂足为A,将点P绕垂足A顺时针旋转角α(0°<α<90°)得到对应点P′,我们称点P到点P′的运动为倾斜α运动.例如:点P(0,2)倾斜30°运动后的对应点为P′(1,).

图形E在平面直角坐标系中,图形E上的所有点都作倾斜α运动后得到图形E′,这样的运动称为图形E的倾斜α运动.

理解

(1)点Q(1,2)倾斜60°运动后的对应点Q′的坐标为

(2)如图2,平行于x轴的线段MN倾斜α运动后得到对应线段M′N′,M′N′与MN平行且相等吗?说明理由.

应用:(1)如图3,正方形AOBC倾斜α运动后,其各边中点E,F,G,H的对应点E′,F′,G′,H′构成的四边形是什么特殊四边形:

(2)如图4,已知点A(0,4),B(2,0),C(3,2),将△ABC倾斜α运动后能不能得到Rt△A′B′C′,且∠A′C′B′为直角,其中点A′,B′,C′为点A,B,C的对应点.请求出cosα的值.

【答案】理解(1),1);(2)M′N′与MN平行且相等;应用(1)矩形;(2)

【解析】

试题分析:理解:

(1)根据题目中称点P到P′的运动为倾α运动的定义来求Q′的坐标;

(2)根据题目中图形E的倾α运动的定义可以判断M′N′与MN的关系;

应用:

(1)参考理解(2)可得,正方形AOBC旋转后形成菱形,菱形的四边中点组成的四边形是矩形;

(2)先求出A′B′=4=OA′,利用三角函数求得cosα的值.

试题解析:(1)如图1,过点Q作QA⊥x轴,垂足为A,过旋转Q′作x轴的垂线,垂足为B,在Rt△ABQ′中,∠Q′AB=30°,BQ′=1,由勾股定理得AB=,∴OB=,∴Q′的坐标为(,1).故答案为:(,1)

(2)M′N′与MN平行且相等,理由如下:

如图2,分别过点M、N作MA⊥x轴于点A,NB⊥x轴于点B,∴MN∥AB,且MN=AB,由定义可知,M′A∥N′B,M′A=N′B,∴四边M′ABN′是平行四边形,∴M′N′∥AB,M′N′=AB,∴M′N′与MN平行且相等.

应用:(1)由理解(2)可得,正方形AOBC旋转后形成菱形,菱形的四边中点组成的四边形是矩形.

故答案为:矩形;

(2)能,cosα=.如图3,设AB的中点为D,∴D点坐标为(1,2),∴CD∥x轴,且CD=2,∵D点对应点D′是A′B′中点,C′D′=2,∴C′D′=A′B′,∴A′B′=4=OA′,∵∠α=∠OA′B′,∴cosα=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若一个多边形的每一个外角都是40°,则这个多边形是( )

A. 六边形 B. 八边形 C. 九边形 D. 十边形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)

(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为

(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为

(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为

(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是(
A.△EBD是等腰三角形,EB=ED
B.折叠后∠ABE和∠CBD一定相等
C.折叠后得到的图形是轴对称图形
D.△EBA和△EDC一定是全等三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一个图形绕着某一点旋转________,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或________,这个点叫做它们的________.这两个图形在旋转后能重合的对应点叫做关于对称中心的________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列调查中,最适合采用全面调查的是(  )

A. 对常州市居民日平均用水量的调查

B. 对一批LED节能灯使用寿命的调查

C. 对常州新闻频道政风热线栏目收视率的调查

D. 对某校八年级(2)班同学的视力情况的调查

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:5x2﹣20=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象与反比例函数为常数,且)的图象交于A(1,a)、B两点.

(1)求反比例函数的表达式及点B的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及PAB的面积.

查看答案和解析>>

同步练习册答案