【题目】△ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)
(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为 ;
(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为 ;
(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为 ;
(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为 .
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(,0).
【解析】
试题分析:(1)利用关于原点中心对称的点的坐标特征求解;
(2)利用点的平移规律求解;
(3)点C走过的路径为以点O为圆心,OC为半径,圆心角为90度的弧,然后根据弧长公式计算点C走过的路径长;
(4)先确定点B关于x轴的对称点B′坐标为(﹣1,﹣1),连结AB′交x轴于P点,根据两点之间线段最短可确定PA+PB的值最小,接着利用待定系数法求出直线AB′的解析式,然后求直线AB′与x轴的交点坐标就看得到点P的坐标.
试题解析:(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为(2,﹣3);
(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为(3,1);
(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长==π;
(4)B点关于x轴的对称点B′坐标为(﹣1,﹣1),连结AB′交x轴于P点,则PA+PB=PA+PB′=AB′,此时PA+PB的值最小,设直线AB′的解析式为y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:,得:,所以直线AB′的解析式为y=﹣4x﹣5,当y=0时,﹣4x﹣5=0,解得x=,所以此时点P的坐标为(,0).
故答案为:(2,﹣3);(3,1);π;(,0).
科目:初中数学 来源: 题型:
【题目】已知:如图,菱形花坛ABCD周长是80m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,相交于O点.
(1)求两条小路的长AC、BD.(结果可用根号表示)
(2)求花坛的面积.(结果可用根号表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件,假设2013年到2015年这种产品产量的年增长率相同,求2013年到2015年这种产品产量的年增长率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:如图1,点P(x,y)在平面直角坐标中,过点P作PA⊥x轴,垂足为A,将点P绕垂足A顺时针旋转角α(0°<α<90°)得到对应点P′,我们称点P到点P′的运动为倾斜α运动.例如:点P(0,2)倾斜30°运动后的对应点为P′(1,).
图形E在平面直角坐标系中,图形E上的所有点都作倾斜α运动后得到图形E′,这样的运动称为图形E的倾斜α运动.
理解
(1)点Q(1,2)倾斜60°运动后的对应点Q′的坐标为 ;
(2)如图2,平行于x轴的线段MN倾斜α运动后得到对应线段M′N′,M′N′与MN平行且相等吗?说明理由.
应用:(1)如图3,正方形AOBC倾斜α运动后,其各边中点E,F,G,H的对应点E′,F′,G′,H′构成的四边形是什么特殊四边形: ;
(2)如图4,已知点A(0,4),B(2,0),C(3,2),将△ABC倾斜α运动后能不能得到Rt△A′B′C′,且∠A′C′B′为直角,其中点A′,B′,C′为点A,B,C的对应点.请求出cosα的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.
(1)用含m的代数式表示BE的长.
(2)当m=时,判断点D是否落在抛物线上,并说明理由.
(3)若AG∥y轴,交OB于点F,交BD于点G.
①若△DOE与△BGF的面积相等,求m的值.
②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com