分析 作AH⊥BC于H,如图1,先根据等腰三角形的性质和含30度的直角三角形三边的关系求出BC=4$\sqrt{3}$,再把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则根据旋转的性质得BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,所以∠FBG′=60°,再证明△AFG≌△AFG′得到FG=FG′,接着利用对称性质得FB=FB′,AB=AB′,∠2=∠3,易得∠1=∠4,AC=AB′,则可判断△AB′G与△ACG关于AG对称,得到GB′=GC,则GB′=BG′,然后证明△FB′G≌△FBG′得到∠FGB′=∠BG′F=90°,于是在Rt△BFG′中含30度的直角三角形三边的关系得BG′=$\frac{1}{2}$BF,FG′=$\frac{\sqrt{3}}{2}$BF,则BF+$\frac{\sqrt{3}}{2}$BF+$\frac{1}{2}$BF=BC=4$\sqrt{3}$,然后解关于BF的方程即可.
解答 ![]()
解:作AH⊥BC于H,如图1,
∵AB=AC=4,∠BAC=120°,
∴∠B=30°,BH=CH,
在Rt△ABH中,AH=$\frac{1}{2}$AB=2,BH=$\sqrt{3}$AH=2$\sqrt{3}$,
∴BC=2BH=4$\sqrt{3}$,
把△ACG绕点A顺时针旋转120°得到△ABG′,连结FG′、AB′,如图,则BG′=CG,AG=AG,∠ABG′=∠C=30°,∠1=∠BAG′,
∴∠FBG′=60°,
∵∠FAG=60°,
∴∠1+∠2=60°,
∴∠FAG′=60°,
在△AFG和△AFG′中,
$\left\{\begin{array}{l}{AG=AG′}\\{∠FAG=∠FAG′}\\{AF=AF}\end{array}\right.$,
∴△AFG≌△AFG′,
∴FG=FG′,
∵点B关于直线AD的对称点为B′,
∴FB=FB′,AB=AB′,∠2=∠3,
而∠3+∠4=60°,∠1+∠2=60°,
∴∠1=∠4,
而AC=AB=AB′,
∴△AB′G与△ACG关于AG对称,
∴GB′=GC,
∴GB′=BG′,
在△FB′G和△FBG′中,
$\left\{\begin{array}{l}{FB′=FB}\\{FG=FG′}\\{B′G=BG′}\end{array}\right.$,
∴△FB′G≌△FBG′,
∴∠FGB′=∠BG′F=90°,
在Rt△BFG′中,∵∠FBG′=60°,
∴BG′=$\frac{1}{2}$BF,FG′=$\frac{\sqrt{3}}{2}$BF,
∴CG=$\frac{1}{2}$BF,FG=$\frac{\sqrt{3}}{2}$BF,
∴BF+$\frac{\sqrt{3}}{2}$BF+$\frac{1}{2}$BF=BC=4$\sqrt{3}$,
∴BF=4$\sqrt{3}$-4.
故答案为4$\sqrt{3}$-4.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质和对称的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -[-x]=[x] | B. | [2x]=2[x] | C. | [x+y]≤[x]+[y] | D. | [x-y]≤[x]-[y] |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com