精英家教网 > 初中数学 > 题目详情
11.【课本知识】用配方法解方程、切线的性质定理、扇形面积公式.
尝试探究:代数式2x2+4x=2(x2+2x)=2(x2+2x+1-1)=2(x+1)2-2,则当x=-1时,该代数式有最小值,最小值为-2;
【实际应用】某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别相切于A、B两点,∠CO2D=60°,直线O1O2与⊙O1、扇形O2CD分别交于E、F两点,EF=24cm,设⊙O1的半径为x cm.
(1)用含x的式子表示扇形O2CD的半径为(24-3x)cm;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?最小成本为多少?

分析 尝试探究:直接利用偶次方的性质得出答案;
【实际应用】(1)连接O1A.利用切线的性质知∠AO2O1=$\frac{1}{2}$∠CO2D=30°;然后在Rt△O1AO2中利用“30°角所对的直角边是斜边的一半”求得O1O2=2x;最后由图形中线段间的和差关系求得扇形O2CD的半径FO2为:EF-EO1-O1O2=24-3x;
(2)设该玩具的制作成本为y元,则根据圆形的面积公式和扇形的面积公式列出y与x间的函数关系,然后利用二次函数的最值即可求得该玩具的最小制作成本.

解答 解:尝试探究:代数式2x2+4x=2(x2+2x)=2(x2+2x+1-1)=2(x+1)2-2,
则当x=-1时,该代数式有最小值,最小值为:-2;
故答案为:-1,-2.

【实际应用】(1)连接O1A.
∵⊙O1与O2C、O2D分别切一点A、B
∴O1A⊥O2C,O2E平分∠CO2D,
∴∠AO2O1=$\frac{1}{2}$∠CO2D=30°,
∴在Rt△O1AO2中,O1O2=2AO1=2x.
∴FO2=EF-EO1-O1O2=24-3x,即扇形O2CD的半径为(24-3x)cm.
故答案为:(24-3x);

(2)设该玩具的制作成本为y元,则
y=0.45πx2+0.06×$\frac{(360-60)π×(24-3x)^{2}}{360}$
=0.9πx2-7.2πx+28.8π
=0.9π(x-4)2+14.4π
所以当x-4=0,即x=4时,y的值最小.
答:当⊙O1的半径为4cm时,该玩具的制作成本最小.

点评 本题考查了切线的性质、扇形面积的计算、解直角三角形以及二次函数的最值.在利用二次函数求最值时,此题采用了配方法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.已知正数c的平方根是2a+3和a-6,b的立方根为2,求3a+b+c的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.课堂上老师提出这样一个问题:你能用手中的矩形纸片尽可能大的折出一个菱形吗?有两位同学很快折出了各自不同的菱形,如甲、乙两图:

(1)如果该矩形纸片的长为8,宽为6,则甲、乙两图中的菱形周长分别为:20,24.(直接写出答案)
(2)这时老师说,这两位同学折出的菱形周长都不是最大的,聪明的你能够想出最大的菱形应该怎样折出来吗?如丙图所示:在矩形ABCD中,设AB=6,AD=8,请你在图中画出周长最大的菱形的示意图,标注上适当的字母,并求出这个菱形的周长.
(3)借题发挥:如图丁,在正方形ABCD中,AB=6,若折叠该正方形,使得点D落在AB边上的点E处,折痕FG交AD于点F,交BC于点G,边DC折叠后EH与BC交于点M,设AE=a,试探究△EBM的周长与a的取值无关.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,⊙O的圆心O在坐标原点,直径AB=8,点P是直径AB上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.
(1)点P在运动过程中,圆周角∠PCE=45°,其所对的弦DE的长不变(“变化”或“不变”);
(2)当m=3时,试求矩形CEGF的面积;
(3)当P在运动过程中,探索PD2+PC2是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;
(4)当△PDE的面积为4时,求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知正比例函数和反比例函数的图象都经过点(-3,4),求这两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在△ABC中,AB=AC,且点A的坐标为(-3,0),点C坐标为(0,$\sqrt{3}$),点B在y轴的负半轴上,抛物线y=-$\frac{\sqrt{3}}{3}$x2+bx+c经过点A和点C
(1)求b,c的值;
(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由
(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.小明从家到学校,开始步行,后来跑步,小明离家的路程S(m)与所用时间t(分)之间的关系如图所示.
(1)根据图象回答:小明家距学校的路及小明步行的速度.
(2)若h≤8,小明跑步速度为210m/分,求小明至少需要跑几分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知将同样大小的小长方形纸片拼成的如图形状的大长方形(小长方形纸片长为a,宽为b)请你仔细观察图形,解答下列问题:
(1)a与b有怎样的关系?
(2)图中阴影部分的面积与大长方形的面积有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积.

查看答案和解析>>

同步练习册答案