精英家教网 > 初中数学 > 题目详情

【题目】如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).

【答案】55.
【解析】解:连接OA,OB,

∵PA、PB分别切⊙O于点A、B,

∴OA⊥PA,OB⊥PB,

即∠PAO=∠PBO=90°,

∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,

∴∠C= ∠AOB=55°.

所以答案是:55.

【考点精析】利用圆周角定理和切线的性质定理对题目进行判断即可得到答案,需要熟知顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】脐橙结硕果,香飘引客来,赣南脐橙以其外表光洁美观,肉质脆嫩,风味浓甜芳香的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2A型车和1B型车载满脐橙一次可运走10吨;用1A型车和2B型车载满脐橙一次可运走11.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.

根据以上信息,解答下列问题:

11A型车和1B型车都载满脐橙一次可分别运送多少吨?

2)请你帮该物流公司设计租车方案;

3)若1A型车需租金100/次,1B型车需租金120/.请选出费用最少的租车方案,并求出最少租车费.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

平均成绩

中位数

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5


(1)完成表中填空①;②
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,折叠边长为a的正方形ABCD,使点C落在边AB上的点M处(不与点A,B重合),点D落在点N处,折痕EF分别与边BC、AD交于点E、F,MN与边AD交于点G.证明:

(1)△AGM∽△BME;
(2)若M为AB中点,则
(3)△AGM的周长为2a.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EF为边BC上两点,且BECFAFDE

1)求证:△ABF≌△DCE

2)四边形ABCD是矩形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:sin45°﹣cos30°tan60°
(2)解方程:x2﹣4x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.

BC间的距离;这辆小汽车超速了吗?请说明理由.

【答案】这辆小汽车没有超速.

【解析】

(1)根据勾股定理求出BC的长;
(2)直接求出小汽车的时速,进行比较得出答案.

(1)RtABC中,AC60 m

AB100 m,且AB为斜边,根据勾股定理,得BC80 m.

(2)这辆小汽车没有超速.

理由:∵80÷516(m/s)

16 m/s57.6 km/h57.6<70

∴这辆小汽车没有超速.

【点睛】

考查勾股定理的应用,熟练掌握勾股定理是解题的关键.

型】解答
束】
19

【题目】已知:如图,线段ACBD相交于点G,连接ABCDECD上一点,FDG上一点,,且

求证:,求的度数.

查看答案和解析>>

同步练习册答案