精英家教网 > 初中数学 > 题目详情

【题目】我市某风景区门票价格如图所示,百姓旅行社有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120人,乙团队人数不超过50人.设甲团队人数为x人,如果甲、乙两团队分别购买门票,两团队门票款之和为W元.
(1)求W关于x的函数关系式,并写出自变量x 的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可节约多少元.

【答案】
(1)

解:∵甲团队人数为x人,乙团队人数不超过50人,

∴120﹣x≤50,解得:x≥70.

①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600;

②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600.

综上所述,W=


(2)

解:∵甲团队人数不超过100人,

∴x≤100,W=﹣10x+9600,

∵70≤x≤100,W随x的增大而减少,

∴x=70时,W取最大值,最大值=﹣10×70+9600=8900(元),

若两团联合购票需120×60=7200(元),

∴最多可节约8900﹣7200=1700(元).

答:甲、乙两团队联合购票比分别购票最多可节约1700元钱.


【解析】(1)由甲团队人数为x人,乙团队人数不超过50人,可得出关于x的一元一次不等式,解不等式可得出x的取值范围,结合门票价与人数的关系分段考虑,由总钱数=甲团队购票钱数+乙团队购票钱数得出函数关系式;(2)由甲团队人数不超过100人,选定所用W关于x的函数解析式,由一次函数的单调性结合x的取值范围可得出W的最大值,用其减去甲乙团队合作购票所需钱数即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.

(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;
(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;
(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?
(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣ x,点A1坐标为(﹣3,0).过点A1作x轴的垂线交直线l于点B1 , 以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2 , 再过点A2作x轴的垂线交直线l于点B2 , 以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A3 , …,按此做法进行下去,点A2016的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.连接BD,把△ABD绕着点B逆时针旋转90°得到△EBF,若点F刚好落在DA的延长线上,则∠C=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是(  )

A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(2,a)在抛物线y=x2
(1)求A点的坐标;
(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:﹣16 ×cos45°﹣20170+31

查看答案和解析>>

同步练习册答案