精英家教网 > 初中数学 > 题目详情

【题目】“中国诗词大会”带着我们“赏中华诗词、寻文化基因、品生活之美”,从古人的智慧和情怀中汲取营养、涵养心灵,其中的“飞花令”环节,在广大青少年中圈粉无数.西安铁一中分校初三二班的同学们准备在班内举行“飞花令”比赛,组织过程如下:全班同学分成五个小组,每个小组派5名同学参加比赛,这5名同学依次从写有“春”、“云”、“月”、“花”、“夜”的五张卡片中随机摸出一张(不放回)5个小组中抽取相同字的同学进行比赛(例如5名抽到“春”字同学进行以“春”为主题字的飞花令比赛).第一小组的小丽和第二小组的小英分别是各自小组第一个抽取卡片的同学.

1)求小丽抽到“春”的概率;

2)小丽和小英都比较擅长“春”和“月”为主题的诗句,求她们至少有一人抽到自己擅长的主题字的概率.

【答案】1;(2

【解析】

1)根据概率的定义即可解决.

2)通过表格列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.

解:(1)∵有五张卡片,

∴小丽抽到的概率为

2)列表格得:

由表格可知,一共有25种等可能的结果,其中她们至少有一人抽到自己擅长的主题字的有16种可能,所以她们至少有一人抽到自己擅长的主题字的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点的平行线交两弧于点,则图中阴影部分的面积是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的点AC在⊙O上,⊙OAB相交于点D,连接CD,∠A30°DC

1)求圆心O到弦DC的距离;

2)若∠ACB+ADC180°,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与反比例函数的图像交于,与轴、轴相交于两点,过点轴、轴平行线交于点,若,则__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知矩形ABCDAB=4AD=3,点E为边DC上不与端点重合的一个动点,连接BE,将BCE沿BE翻折得到BEF,连接AF并延长交CD于点G,则线段CG的最大值是( )

A.1B.1.5C.4-D.4-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形ABCD中,点EBC的中点,过点BBGAE于点G,过点CCF垂直BG的延长线于点H,交AD于点F

(1)求证:△ABG≌△BCH

(2)如图2,连接AH,连接EH并延长交CD于点I

求证:① AB2=AE·BH;② 的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AOOM,垂足为点O,且AO7cm,∠BAO160°,BCOMCD8cm

将图2中的BC绕点B向下旋转45°,使得BCD落在BCD′的位置(如图3所示),此时CD′⊥OMAD′∥OMAD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94cos70°≈0.34cot70°≈0.36,结果精确到1cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级某班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会.抽奖方案如下:将一副扑克牌中点数为“2”、“3”、“3”、“5”、“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖.记每次抽出两张牌点数之差为,按下表要求确定奖项.

奖项

一等奖

二等奖

三等奖

1)用列表法或画树状图的方法求出甲同学获二等奖的概率;

2)判断是否每次抽奖都会获奖?请说明理由.

查看答案和解析>>

同步练习册答案