【题目】设二次函数 y=ax2+bx﹣(a+b)(a,b 是常数,a≠0).
(1)判断该二次函数图象与 x 轴的交点的个数,说明理由.
(2)若该二次函数图象经过 A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.
(3)若 a+b<0,点 P(2,m)(m>0)在该二次函数图象上,求证:a>0.
【答案】(1)二次函数图象与x轴的交点的个数有两个或一个(2)y=3x2﹣2x﹣1(3)a>0
【解析】
(1)先判断,根据二次函数与轴交点个数与的关系得到交点的个数为个或2个.
(2)由于当时,所以C点不在该二次函数图象上;然后将A,B两点坐标分别代入二次函数解析式,得到方程组,然后求得和的值,即可求出二次函数解析式。
(3)将代入该二次函数解析式,得到 用减去消掉,再由,即可求得
(1)设y=0
∴0=ax2+bx﹣(a+b)
∵△=b2﹣4a[﹣(a+b)]=b2+4ab+4a2=(2a+b)2≥0
∴方程有两个不相等实数根或两个相等实根.
∴二次函数图象与x轴的交点的个数有两个或一个
(2)当x=1时,y=a+b﹣(a+b)=0
∴抛物线不经过点C
把点A(﹣1,4),B(0,﹣1)分别代入得
解得
∴抛物线解析式为y=3x2﹣2x﹣1
(3)当x=2时
m=4a+2b﹣(a+b)=3a+b>0①
∵a+b<0
∴﹣a﹣b>0②
①②相加得:
2a>0
∴a>0
科目:初中数学 来源: 题型:
【题目】已知四边形,,与互补,以点为顶点作一个角,角的两边分别交线段,于点,,且,连接,试探究:线段,,之间的数量关系.
(1)如图(1),当时,,,之间的数量关系为___________.
(2)在图(2)的条件下(即不存在),线段,,之间的数量关系是否仍然成立?若成立,请完成证明;若不成立,请说明理由.
(3)如图(3),在腰长为的等腰直角三角形中,,,均在边上,且,若,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y1=a1x2+b1x+c1,y2=a2x2+b2x+c2且满足 (k≠0,1).则称抛物线y1,y2互为“友好抛物线”,则下列关于 “友好抛物线”的说法不正确的是( )
A. y1,y2开口方向、开口大小不一定相同
B. 因为y1,y2的对称轴相同
C. 如果y2的最值为m,则y1的最值为km
D. 如果y2与x轴的两交点间距离为d,则y1与x轴的两交点间距离为|k|d
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:
①∠ABC=∠ADC;
②AC与BD相互平分;
③AC,BD分别平分四边形ABCD的两组对角;
④四边形ABCD的面积S=ACBD.
正确的是 (填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一水库大坝的横断面为梯形ABCD,坝顶宽6米,坝高10米,斜坡AB的坡度i1=1:3,斜坡CD的坡度i2=1:1.
(1)求斜坡AB的长(结果保留根号);
(2)求坝底AD的长度;
(3)求斜坡CD的坡角α.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C是⊙O中直径AB上的一个动点,过点C作CD⊥AB交⊙O于点D,点M是直径AB上一固定点,作射线DM交⊙O于点N.已知AB=6cm,AM=2cm,设线段AC的长度为xcm,线段MN的长度为ycm.
小东根据学习函数的经验,对函数y随自变量的变化而变化的规律进行了探索.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 4 | 3.3 | 2.8 | 2.5 |
| 2.1 | 2 |
(说明:补全表格时相关数值保留一位小数)
(2)在图2中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当AC=MN时,x的取值约为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列条件中,不能判定四边形ABCD为矩形的是( )
A.AB∥CD,AB=CD,AC=BDB.∠A=∠B=∠D=90°
C.AB=BC,AD=CD,且∠C=90°D.AB=CD,AD=BC,∠A=90°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com