精英家教网 > 初中数学 > 题目详情

【题目】下列条件中,不能判定四边形ABCD为矩形的是(

A.ABCDABCDACBDB.A=∠B=∠D90°

C.ABBCADCD,且∠C90°D.ABCDADBC,∠A90°

【答案】C

【解析】

根据平行四边形的判定和矩形的判定判断即可.

解:A、∵ABCDABCD

∴四边形ABCD是平行四边形,

ACBD

∴平行四边形ABCD是矩形,正确,故本选项错误;

B、∵∠A=∠B=∠D90°

∴平行四边形ABCD是矩形,正确,故本选项错误;

C、根据ABBCADDC,∠C90°不能推出平行四边形ABCD是矩形,错误,故本选项正确;

D、∵ABCDADBC

∴四边形ABCD是平行四边形,

∵∠A90°

∴平行四边形ABCD是矩形,正确,故本选项错误;

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】设二次函数 y=ax2+bx﹣(a+b)(a,b 是常数,a≠0).

(1)判断该二次函数图象与 x 轴的交点的个数,说明理由.

(2)若该二次函数图象经过 A(﹣1,4),B(0,﹣1),C(1,1)三个点中的其中两个点,求该二次函数的表达式.

(3) a+b<0,点 P(2,m)(m>0)在该二次函数图象上,求证:a>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点AB

1)求AOB的面积;

2)在该一次函数图象上有一点Px轴的距离为6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上任意一点,且CD切⊙O于点D.

(1)试求∠AED的度数.

(2)若⊙O的半径为cm,试求△ADE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)解方程:

(2)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DEBE,求证:△BOE≌△DOF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一书架上的方格中放置四本厚度和长度相同的书,其中书架方格长BF=40cm,书的长度AB=20cm,设一本书的厚度为xcm.

(1)如图1左边三本书紧贴书架方格内侧竖放,右边一本书自然向左斜放,支撑点为C,E,最右侧书一个角正好靠在方格内侧上,若CG=4cm,求EF的长度;

(2)如图2左边两本书紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,最右侧书的下面两个角正好靠在方格内上,若DCE=30°,求x的值(保留一位小数).(参考数据:=1.414,=1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+2x与x轴相交于点B,其对称轴为x=3.

(1)求直线AB的解析式;

(2)过点O作直线l,使lAB,点P是l上一动点,设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;

(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使OPQ为直角三角形且OP为直角边,若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中的点P和图形G给出如下的定义若在图形G上存在一点Q 使得PQ之间的距离等于1则称P为图形G的关联点.

1O的半径为1

O的关联点有_____________________

直线经过01且与轴垂直P在直线上.若PO的关联点求点P的横坐标的取值范围.

2已知正方形ABCD的边长为4中心为原点正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点求圆的半径的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OAOB,OA=OB,则k的值为_____

查看答案和解析>>

同步练习册答案