精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点的坐标为(1),下列结论:①c0;②b24ac0;③a+b=0;④4acb24a,其中错误的是(

A. B. C. D.

【答案】D

【解析】

根据抛物线与y轴的交点坐标即可确定;

根据抛物线与x轴的交点情况即可判定;

根据抛物线的对称轴即可判定;

根据抛物线的顶点纵坐标即可判定.

解:抛物线与y轴正半轴相交,

∴c>0,故正确;

抛物线与x轴相交于两个交点,

∴b2﹣4ac>0,故正确;

③∵抛物线的对称轴为x=

∴x=﹣=

∴a+b=0,故正确;

④∵抛物线顶点的纵坐标为1,

=1,

∴4ac﹣b2=4a,故错误;

其中错误的是④.

故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个边长为4的等边三角形ABC的高与O的直径相等,如图放置,O与BC相切于点C,O与AC相交于点E

(1)求等边三角形的高;

(2)求CE的长度;

(3)若将等边三角形ABC绕点C顺时针旋转,旋转角为α(0°<α<360°),求α为多少时,等边三角形的边所在的直线与圆相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点PPBl于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A的中点.

(1)求证:直线l是⊙O的切线;

(2)若PA=6,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】的“值”定义如下:若点为圆上任意一点,线段长度的最大值与最小值之差即为点的“值”,记为.特别的,当点 重合时,线段的长度为0.

当⊙的半径为2时:

(1)若点 ,则_________ _________

(2)若在直线上存在点,使得,求出点的横坐标;

(3)直线轴, 轴分别交于点 .若线段上存在点,使得,请你直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c过点A(﹣4,﹣3),与y轴交于点B,对称轴是x=﹣3,请解答下列问题:

(1)求抛物线的解析式.

(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数y=ax2+bx+c的图象,给出下列说法:其中正确的说法有__. ab0;②方程ax2+bx+c=0的根为x1=1x2=3;③a+b+c0;④当x1时,随x值的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线.下列结论中,正确的是(  )

A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为坐标原点,点A(1,5)和点B(m,1)均在反比例函数y=图象上.

(1)求m,k的值;

(2)设直线AB与x轴交于点C,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为1520℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y)随时间xh)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:

1)求02小时期间yx的函数解析式;

2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?

查看答案和解析>>

同步练习册答案