精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是矩形,A,B两点在x轴的正半轴上,C,D两点在抛物线上,设OA=(0<<3),矩形ABCD的周长为,则的函数解析式为      

试题分析:已知C,D两点在抛物线上,可知抛物线对称轴为x=
过顶点F作FE⊥OB,垂直为E。CD所在四边形为矩形且CD在抛物线上,易知EF平分AB。所以AE=EB=OE-OA=3-m,易知D点坐标(OA,AD)则
所以矩形ABCD的周长为=4AE+2AD=4(3-m)+2()=
点评:本题难度中等,主要考查学生对二次函数的掌握。这类题型,抓住矩形的性质确定各点坐标与抛物线的关系为解题关键,做这类题要注意数形结合思想的运用。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将抛物线向左平移2个单位后,得到的抛物线解析式是(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线AB交于x轴上的一点A,和另一点B(4,n).点P是抛物线AB两点间部分上的一个动点(不与点AB重合),直线PQ与直线AB垂直,交直线AB于点Q

(1)求抛物线的解析式和cos∠BAO的值。
(2)设点P的横坐标为用含的代数式表示线段PQ的长,并求出线段PQ长的最大值;
(3)点E是抛物线上一点,过点E作EF∥AC,交直线AB与点F,若以E、F、A、C为顶点的四边形为平行四边形,直接写出相应的点E的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图像交轴于,交轴于,过画直线。

(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点在二次函数图像上,以为圆心的圆与直线相切,切点为。且△CHM∽△AOC(点与点对应),求点的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。
⑴直接写出A、C两点坐标和直线AD的解析式;
⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数与x轴交点是,则的值是(   )
A.2012B.2011C.2014D.2013

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知反比例函数y=的图象如右图所示,则二次函数y=的图象大致为(    ).
  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是        (     )
A.图象的对称轴是直线x=1;B.一元二次方程ax2+bx+c=0的两个根是-1、3;
C.当x>1时,y随x的增大而减小;D.当-1<x<3时,y<0.

查看答案和解析>>

同步练习册答案