精英家教网 > 初中数学 > 题目详情

【题目】如图抛物线y=ax2+2x轴于点A(﹣2,0)、B,交y轴于点C;

(1)求抛物线的解析式;

(2)P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设PQC的面积为S,求St间的函数关系式并直接写出t的取值范围;

(3)(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过PPEAC于点E,求EG的长.

【答案】(1)y=﹣x2+2;(2)S=﹣t2+t(0<t<2);S═t2﹣t(2<t≤4);(3).

【解析】

(1)把A点坐标代入二次函数,解得a=-,即可求解;
(2)利用S=CQOP,分0<t<2、2<t≤4两种情况求解即可;
(3)过点GGH⊥y轴,利用HG∥OP,得=,求出GH=,利用GE=EC+CG=即可求解.

解:(1)把A点坐标代入二次函数,解得a=﹣

故:二次函数的表达式为:y=﹣x2+2;

(2)S=CQOP,

0<t<2时,

S=t(﹣t+2)=﹣t2+t,

2<t≤4时,

S═t(t﹣2)=t2﹣t;

(3)t秒时,AP=t,OP=t﹣2,CQ=t,

直线ACx轴的夹角为45°,

AE=,GC=GH,AC=2,HC=HG,

过点GGHy轴,交y轴于点H,

HGOP,

=

即:=

解得:GH=

则:GC=GH=

GE=EC+CG=AC﹣AE+GC=2+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax+c2的图象大致为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”, “5”,“6”的四张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.

奖项

一等奖

二等奖

三等奖

|x|

|x|=4

|x|=3

1|x|<3

(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;

(2)求出每次抽奖获奖的概率?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=x+3与抛物线交于AB两点,点Ax轴上,点B的横坐标为.动点P在抛物线上运动(不与点AB重合),过点Py轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MNy轴在PQ的同侧,连结PM.设点P的横坐标为m

1)求bc的值.

2)当点N落在直线AB上时,直接写出m的取值范围.

3)当点PAB两点之间的抛物线上运动时,设正方形PQMN的周长为C,求Cm之间的函数关系式,并写出Cm增大而增大时m的取值范围.

4)当PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图,若双曲线(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线(k>0)的对径.

(1)求双曲线的对径;

(2)若某双曲线(k>0)的对径是.求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.

1)设某家庭月用水量为x吨,水费为y元,请写出yx之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;

2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x+2x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.

(1)求抛物线的解析式;

(2)M是抛物线x轴上方一点,∠MBA=CBO,求点M的坐标;

(3)过点AAB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在北京市开展的首都少年先锋岗活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出AB两点间的距离为15m,并且NBA三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.

(参考数据:sin35°≈0.6cos35°≈0.8tan35°≈0.7

查看答案和解析>>

同步练习册答案