【题目】如图,已知直线y=x+2交x轴、y轴分别于点A、B,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣,且抛物线经过A、B两点,交x轴于另一点C.
(1)求抛物线的解析式;
(2)点M是抛物线x轴上方一点,∠MBA=∠CBO,求点M的坐标;
(3)过点A作AB的垂线交y轴于点D,平移直线AD交抛物线于点E、F两点,连结EO、FO.若△EFO为以EF为斜边的直角三角形,求平移后的直线的解析式.
【答案】(1)y=﹣x2﹣x+2.(2)M(﹣,).(3)平移后的解析式为y=﹣x﹣1+或y=﹣x﹣1﹣.
【解析】
(1)利用待定系数法即可解决问题;
(2)如图1中,作EA⊥AB交BM的延长线于E,作EF⊥x轴于F.求出点E坐标,再求出直线BE的解析式,利用方程组即可解决问题;
(3)如图2中,当直线AD向下平移时,设E(x1,y1),F(x2,y2),作EH⊥x轴于H,FG⊥x轴于G.利用相似三角形的性质以及根与系数关系构建方程组即可解决问题;
(1)∵直线y=x+2交x轴、y轴分别于点A、B,
∴A(﹣2,0),B(0,2),
∵抛物线的对称轴x=﹣,A,C关于对称轴对称,
∴C(1,0),
设抛物线的解析式为y=a(x+2)(x﹣1),把(0,2)代入得到a=﹣1,
∴抛物线的解析式为y=﹣x2﹣x+2.
(2)如图1中,作EA⊥AB交BM的延长线于E,作EF⊥x轴于F.
∵∠ABE=∠OBC,∠BAE=∠BOC=90°,
∴△BAE∽△BOC,
∴,
∴,
∴AE=,
∵∠EAF+∠BAO=90°,∠BAO=45°,
∴∠EAF=45°,
∴EF=AF=1,
∴E(3,1),
∴直线BE的解析式为y=﹣x+2,
由,解得或,
∴M(-,).
(3)如图2中,当直线AD向下平移时,设E(x1,y1),F(x2,y2),作EH⊥x轴于H,FG⊥x轴于G.
∵∠EOF=90°=∠PHE=∠OGF,
由△EHO∽△OGF得到:
,
∴,
∴x1x2+y1y2=0,
由,消去y得到:x2+b-2=0,
∴x1x2=b-2,x1+x2=0,y1y2=(-x1+b)(-x2+b)=x1x2+b2,
∴2(b-2)+b2=0,
解得b=-1-或-1+(舍弃),
当直线AD向上平移时,同法可得b=-1+,
综上所述,平移后的解析式为y=-x-1+或y=-x-1-.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象经过点(4,3),(3,0).
(1)求b、c的值;
(2)求出该二次函数图象的顶点坐标和对称轴,并在所给坐标系中画出该函数的图象;
(3)该函数的图象经过怎样的平移得到y=x2的图象?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线交于A、B两点,点A在x轴上,点B的横坐标为.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.
(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+2交x轴于点A(﹣2,0)、B,交y轴于点C;
(1)求抛物线的解析式;
(2)点P从点A出发,以1个单位/秒的速度向终点B运动,同时点Q从点C出发,以相同的速度沿y轴正方向向上运动,运动的时间为t秒,当点P到达点B时,点Q也停止运动,设△PQC的面积为S,求S与t间的函数关系式并直接写出t的取值范围;
(3)在(2)的条件下,当点P在线段OB上时,设PQ交直线AC于点G,过P作PE⊥AC于点E,求EG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车厂决定把一块长100m、宽60m的矩形空地建成停车场.设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为停车位,且四周的4个出口宽度相同,其宽度不小于28m,不大于52m.设绿化区较长边为xm,停车场的面积为ym2
(1)直接写出:
①用x的式子表示出口的宽度为_____.
②y与x的函数关系式及x的取值范围.
(2)求停车场的面积y的最大值.
(3)预计停车场造价为100元/m2,绿化区造价为50元/m2.如果汽车厂投资不得超过540000元建造,当x为整数时,共有几种建造方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程:
我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.
① ② ③ ④
我选择第 个方程。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m),另三边用木栏围成,木栏长35m.鸡场的面积能达到150m2吗?如果能,请你给出设计方案;如果不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com