分析 (1)已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出xy的值;
(2)由a2+b2=10a+8b-41,得a,b的值,然后利用三角形的三边关系求得c的取值范围即可.
解答 解:(1)∵x2+2xy+2y2-4y+4=0,
∴x2+2xy+y2+y2-4y+4=(x+y)2+(y-2)2=0,
∴x+y=0,y-2=0,
∴x=-y,y=2,
∴x=-2,y=2
则xy=-4.(2)
∵a2+b2=10a+8b-41,
∴a2+b2-8b-10a+41=0,
∴(a-4)2+(b-5)2=0,
∴a=4,b=5;
∴5-4<c<5+4,
∵c是最长边,c≤5,
∴5≤c<9,
∴c可能是5,6,7,8.
点评 此题考查了因式分解的应用,非负数的性质及三角形的三边关系,熟练掌握完全平方公式是解本题的关键
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a3•a2=a6 | B. | (-a3)2=a6 | C. | 2a+3a2=5a3 | D. | $3{a^3}÷2a=\frac{3}{2}{a^3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (a-b)2=a2-2ab+b2 | B. | 2a(a+b)=2a2+2ab | C. | (a+b)2=a2+2ab+b2 | D. | (a+b)(a-b)=a2-b2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -$\sqrt{20}$ | B. | $\sqrt{15}$ | C. | $\root{3}{19}$ | D. | -$\root{3}{62}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com