精英家教网 > 初中数学 > 题目详情

【题目】如图,将正方形ABCD折叠,使点ACD边上的点H重合(H不与CD重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD周长为m,△CHG周长为n,则为(  )

A.B.C.D.

【答案】B

【解析】

DE=xDH=y,根据正方形的周长公式和正方形的性质可得AD=DC=,∠EDH=HCG=A=90°,由折叠的性质可得AE=EH=ADDE=,∠EHG=A=90°,利用相似三角形的判定可得△DEH∽△CHG,列出比例式,然后根据三角形的周长公式即可列出第一个等式,然后根据勾股定理即可列出第二个等式,然后联立即可求出结论.

解:设DE=xDH=y

∵正方形的周长为m

AD=DC=,∠EDH=HCG=A=90°

根据折叠的性质可知AE=EH=ADDE=,∠EHG=A=90°

∴∠DEH+∠DHE=90°,∠CHG+∠DHE=90°

∴∠DEH=CHG

∴△DEH∽△CHG

解得:

∵△CHG周长为n

CHCGHG=n

整理,得

RtEDH中,DE2DH2=EH2

整理,得

将②代入①,得

解得:

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:

设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为不称职,当 时为基本称职,当 时为称职,当 时为优秀”.根据以上信息,解答下列问题:

(1)补全折线统计图和扇形统计图;

(2)求所有称职优秀的销售员销售额的中位数和众数;

(3)为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有称职优秀的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进某种茶壶、茶杯共200个进行销售,其中茶杯的数量是茶壶数量的5倍还多20个.销售方式有两种:(1)单个销售;(2)成套销售.相关信息如下表:

进价(元/

单个售价(元/

成套售价(元/套)

茶壶

24

a

55

茶杯

4

a﹣30

备注:(1)一个茶壶和和四个茶杯配成一套(如图);

(2)利润=(售价﹣进价)×数量

(1)该商店购进茶壶和茶杯各有多少个?

(2)已知甲顾客花180元购买的茶壶数量与乙顾客花30元购买的茶杯数量相同.

①求表中a的值.

②当该商店还剩下20个茶壶和100个茶杯时,商店将这些茶壶和茶杯中的一部分按成套销售,其余按单个销售,这120个茶壶和茶杯全部售出后所得的利润为365元.问成套销售了多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将正方形ABCD按图1所示置于平面直角坐标系中,AD边与x轴重合,顶点BC位于x轴上方,将直线lyx3沿x轴向左以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t秒,mt的函数图象如图2所示,则ab的值分别是(  )

A.6B.6C.77D.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某药品生产基地共有5条生产线,每条生产线每月生产药品20万盒,该基地打算从第一个月开始到第五个月结束,对每条生产线进行升级改造.改造时,每个月只升级改造一条生产线,这条生产线当月停产,并于下个月投入生产,其他生产线则正常生产.经调查,每条生产线升级改造后,每月的产量会比原来提高20%

1)根据题意,完成下面问题:

①把下表补充完整(直接写在横线上):

月数

1个月

2个月

3个月

4个月

5个月

6个月

产量/万盒

   

   

   

92

②从第1个月进行升级改造后,第   个月的产量开始超过未升级改造时的产量;

2)若该基地第x个月(1x5,且x是整数)的产量为y万盒,求y关于x的函数关系式;

3)已知每条生产线的升级改造费是30万元,每盒药品可获利3元.设从第1个月开始升级改造后,生产药品所获总利润为W1万元;同时期内,不升级改造所获总利润为W2万元设至少到第n个月(n为正整数)时,W1大于W2,求n的值.(利润=获利﹣改造费)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件,出厂价为每件,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:

1)李明在开始创业的第一个月将销售单价定为,那么政府这个月为他承担的总差价为多少元?

2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?

3)物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于,那么政府为他承担的总差价最少为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC中,AB=AC,BAC=120°,DAE=60°,BD=5,CE=8,则DE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O所在圆的圆心,∠AOB90°,点P上运动(不与点AB重合),APOB延长线于点CCDOP于点D.若OB2BC2,则PD的长是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

九年级数学兴趣小组组织了以等积变形为主题的课题研究.

第一学习小组发现:如图(1),点A、点B在直线l1上,点C、点D在直线l2上,若l1∥l2,则SABC=SABD;反之亦成立.

第二学习小组发现:如图(2),点P是反比例函数上任意一点,过点Px轴、y轴的垂线,垂足为MN,则矩形OMPN的面积为定值|k|

请利用上述结论解决下列问题:

1)如图(3),四边形ABCD、与四边形CEFG都是正方形点ECD上,正方形ABCD边长为2,则=_________

2)如图(4),点PQ在反比例函数图象上,PQ过点O,过Py轴的平行线交x轴于点H,过Qx轴的平行线交PH于点G,若=8,则=_________k=_________

3)如图(5)点PQ是第一象限的点,且在反比例函数图象上,过点Px轴垂线,过点Qy轴垂线,垂足分别是MN,试判断直线PQ与直线MN的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案