【题目】阅读材料:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.设CD=x,若AB=4,DE=2,BD=8,则可用含x的代数式表示AC+CE的长为.然后利用几何知识可知:当A、C、E在一条直线上时,x=时,AC+CE的最小值为10.根据以上阅读材料,可构图求出代数式的最小值为_____.
科目:初中数学 来源: 题型:
【题目】港珠澳大桥,从2009年开工建造,于2018年10月24日正式通车.其全长55公里,连接港珠澳三地,集桥、岛、隧于一体,是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.73,tan20°≈0.36,结果精确到0.1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知矩形和点,当点在上任一位置(如图所示)时,易证得结论:,请你探究:当点分别在图、图中的位置时,、、和又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图证明你的结论.
答:对图的探究结论为________;
对图的探究结论为________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且.连接PB,试探究PA,PB,PC满足的等量关系.
图1 图2
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到,连接,如图1所示.
由≌可以证得是等边三角形,再由可得∠APC的大小为 度,进而得到是直角三角形,这样可以得到PA,PB,PC满足的等量关系为 ;
(2)如图2,当α=120°时,请参考(1)中的方法,探究PA,PB,PC满足的等量关系,并给出证明;
(3)PA,PB,PC满足的等量关系为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正多边形每个内角比相邻外角大60°.
(1)求这个正多边形的边数;
(2)求这个正多边形的内切圆与外切圆的半径之比;
(3)将这个多边形对折,并完全重合,求得到图形的内角和是多少度(按一层计算)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.在运动的过程中,写出以P、O、E为顶点的三角形与△ABE相似时t的值为_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一块含30°(即∠CAB=30°)角的三角板和一个量角器拼在一起,三角板斜边AB与量角器所在圆的直径MN重合,其量角器最外缘的读数是从N点开始(即N点的读数为0),现有射线CP绕着点C从CA顺时针以每秒2度的速度旋转到与△ACB外接圆相切为止.在旋转过程中,射线CP与量角器的半圆弧交于E.
(1)当射线CP与△ABC的外接圆相切时,求射线CP旋转度数是多少?
(2)当射线CP分别经过△ABC的外心、内心时,点E处的读数分别是多少?
(3)当旋转7.5秒时,连接BE,求证:BE=CE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com