精英家教网 > 初中数学 > 题目详情
如图,已知,正方形纸片ABCD的边长为4,点P在BC边上,BP=1,点E在AB边上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点Cˊ落在射线PBˊ上.

(1)求证:EB′// C′F;
(2)连接B′F、C′E,求证:四边形EB′F C′是平行四边形.
(1)根据正方形的性质可得∠B=∠C=90°,根据折叠的性质可得∠EB′P=∠B=90°即∠EB′C′=90°,∠FC′P=∠C=90°,即可得到∠EB′C′=∠FC′P,从而证得结论;
(2)先解Rt△EBP求得BE的长,再根据折叠的性质可得∠FPC=30°,根据含30°的直角三角形的性质可证得BE=FC即EB′= FC′,再结合EB′// C′F即可证得结论.

试题分析:(1)∵正方形ABCD,
∴∠B=∠C=90°.
∵沿PE翻折△EBP得到△EB′P,
∴∠EB′P=∠B=90°即∠EB′C′=90°.
∵沿PF翻折△FCP得到△FC′P,
∴∠FC′P=∠C=90°.
∴∠EB′C′=∠FC′P.
∴EB′// C′F;
(2)在Rt△EBP中,
∵∠BPE=60°,BP=1,
∴BE=.
∵沿PE翻折△EBP得到△EB′P,沿PF翻折△FCP得到△FC′P,
∴∠FPC=30°
∵BC=4,BP=1,
∴PC=3.
∴FC=
∴BE=FC即EB′= FC′
又∵EB′// C′F,
∴四边形EB′F C′是平行四边形.
点评:特殊四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,O为AD边的中点,若把四边形ABCD先向右平移3个单位长度,再向下平移2个单位长度,试解决下列问题:

(1)画出四边形ABCD平移后的图形四边形A′B′C′D′;
(2)在四边形A′B′C′D′上标出点O的对应点O’;
(3)四边形A′B′C′D′ 的面积=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,AB=1,E、F分别为AD、CD的中点,沿BE将△ABE折叠,若点A恰好落在BF上,则AD=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如下图,是轴对称图形但不是中心对称图形的是
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中,是中心对称图形但不是轴对称图形的是   (  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中,不是轴对称图形的为(   )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,四边形ABCD中,为它的对角线,E为AB边上一动点(点E不与点A、B重合),EF∥AC交BC于点F,FG∥BD交DC于点G,GH∥AC交AD于点H,连接HE.记四边形EFGH的周长为,如果在点的运动过程中,的值不变,则我们称四边形ABCD为“四边形”, 此时的值称为它的“值”.经过探究,可得矩形是“四边形”.如图2,矩形ABCD中,若AB=4,BC=3,则它的“值”为          
  
(1)等腰梯形                  (填“是”或 “不是”)“四边形”;
(2)如图3,是⊙O的直径,A是⊙O上一点,,点上的一动点,将△沿的中垂线翻折,得到△.当点运动到某一位置时,以中的任意四个点为顶点的“四边形”最多,最多有   个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,F、G分别是正五边形ABCDE的边BC、CD上的点,CF=DG,连接DF、EG.将△DFC绕正五边形的中心按逆时针方向旋转到△EGD,旋转角为α(0°<α<180°),则∠α=    °;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

操作与探究:
如图,在平面直角坐标系xOy中,已知点的坐标为(1,0).将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段;又将线段绕原点O沿逆时针方向旋转45,再将其延长到,使得,得到线段,如此下去,得到线段,…,

(1)写出点M5的坐标;
(2)求的周长;
(3)我们规定:把点0,1,2,3…)的横坐标,纵坐标都取绝对值后得到的新坐标称之为点的“绝对坐标”.根据图中点的分布规律,请写出点的“绝对坐标”.

查看答案和解析>>

同步练习册答案