分析 (1)根据平行线的性质可得∠AFE=∠DBE,然后利用AAS判定△AFE≌△DBE即可;
(2)首先证明四边形ADCF是平行四边形,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD,进而可得四边形ADCF是菱形.
解答 (1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
$\left\{\begin{array}{l}{∠AFE=∠DBE}\\{∠FEA=∠BED}\\{AE=DE}\end{array}\right.$,
∴△AFE≌△DBE(AAS);
(2)解:四边形ADCF是菱形,理由如下:
∵△AFE≌△DBE,
∴AF=BD,
∵AD是斜边BC的中线,
∴BD=DC
∴AF=DC.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵AC⊥AB,AD是斜边BC的中线,
∴AD=$\frac{1}{2}$BC=DC,
∴平行四边形ADCF是菱形.
点评 此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形,全等三角形对应边相等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 5个 | C. | 6个 | D. | 7个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com