精英家教网 > 初中数学 > 题目详情
14.不等式$-\frac{1}{2}≤\frac{1-0.6x}{-3}≤\frac{2}{3}$的整数解的个数为(  )
A.4个B.5个C.6个D.7个

分析 分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.

解答 解:解不等式-$\frac{1}{2}$≤$\frac{1-0.6x}{-3}$,得:x≥-$\frac{5}{6}$,
解不等式$\frac{1-0.6x}{-3}≤\frac{2}{3}$,得:x≤5,
所以该不等式组的解集为:-$\frac{5}{6}$≤x≤5,
则其整数解有:0、1、2、3、4、5这6个,
故选:C.

点评 本题考查的是解一元一次不等式组及其整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.已知?ABCD中,AC是对角线,BE平分∠ABC交AC于点E,DF平分∠ADC交AC于点F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,CA=CB,∠CAB=30°,⊙O经过点C,且圆的直径AD在线段AB上.
(1)试说明CB是⊙O的切线;
(2)∠AOC的平分线OE交弧AC于点E,求证:四边形AOCE是菱形;
(3)在(2)的条件下,设点M是线段AC上任意一点(不含端点),连接OM,当$\frac{1}{2}$CM+OM的最小值为4$\sqrt{3}$时,求⊙O的半径r的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,在?ABCD中,AC=6,BD=10,
(1)设?ABCD的边BC=x,则x的取值范围是2<x<8;
(2)若AC⊥AB,则?ABCD的周长等于8+4$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:△AFE≌△DBE;
(2)若AB⊥AC,试判断四边形ADCF是不是菱形?若是,证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
在第九章的学习中,我们认识了完全平方公式,即(a±b)2=a2±2ab+b2,并把形如a2±2ab+b2的式子称为完全平方式.
把形如ax2+bx+c(a≠0)的二次三项式(或其一部分)配成完全平方式的过程叫做配方.配方的基本形式是完全平方公式的逆用,即a2±2ab+b2=(a+b)2
例如:对于x2-2x+4配方
①选取二次项和一次项配方:x2-2x+4=x2-2x+1+3=(x-1)2+3
②选取二次项和常数项配方:x2-2x+4=x2-4x+4+2x=(x-2)2+2x或x2-2x+4=x2+4x+4-2x=(x+2)2-6x
③选取一次项和常数项配方:x2-2x+4=$\frac{1}{4}{x}^{2}$$-2x+4+\frac{3}{4}{x}^{2}$=($\frac{1}{2}x-2$)2$+\frac{3}{4}{x}^{2}$
根据上述材料,解决下列问题:
(1)把4x2+1配成一个完全平方式,请你添加一单项式,使它成为一个完全平方式,则添加的单项式可以是4x(只需添加一个你认为正确的结论);
(2)写出x2+4x+9的两种不同配方形式;
(3)若4x2+y2-4x+6y+10=0,求x、y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列多项式中,能用公式法因式分解的是(  )
A.-a2-b2B.a2+b2C.-4a2+12ab-9D.25m2+15n+9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.为了配合“交通安全”宣传教育,针对闯红灯的现象时有发生的实际情况,九年级某班开展一次题为“红灯与绿灯”的课题学习活动,它们将全班学生分成8个小组,其中第①~⑥组分别负责早、中、晚三个时段闯红灯违章现象的调查,第⑦小组负责查阅有关红绿灯的交通法规,第⑧小组负责收集有关的交通标志.数据汇总如下:
部分时段车流量情况调查表
 时间 负责组别 车流总量 每分钟车流量
 早晨上学6:30~7:00 ①② 2747 92
 中午放学11:20~11:50 ③④ 1449 48
 下午放学5:00~5:30 ⑤⑥ 3669 122
回答下列问题:
(1)请你写出2条交通法规:①红灯停、绿灯行,②过马路要走人行横道线;
(2)早晨、中午、晚上三个时段每分钟车流量的极差是74,这三个时段的车流总量的中位数是2747;
(3)观察表中的数据及条形统计图,写出你发现的一个现象并分析其产生的原因;
(4)通过分析写一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度的速度都是1cm/s,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).
(1)当t为何值时,四边形ABQP是矩形?
(2)当t为何值时,四边形AQCP是菱形?
(3)分别求出(2)中菱形AQCP的周长和面积.

查看答案和解析>>

同步练习册答案