分析 先根据平行四边形的性质得出∠ABC=∠CDA,然后利用角平分线的知识证明∠BAE=∠DCF,从而根据三角形全等的判定定理即可作出证明.
解答 证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠ABC=∠CDA,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CDF,
∵AB∥CD,
∴∠BAE=∠DCF
在△ABE和△CDF中,
$\left\{\begin{array}{l}{∠ABE=∠CDF}\\{AB=CD}\\{∠BAE=∠DCF}\end{array}\right.$,
∴△ABE≌△CDF(ASA),
∴AE=CF.
点评 本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两三角形全等所需要的条件,然后根据三角形全等的判定定理进行证明.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{2x-5y=8}\\{x=y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=1}\\{x=y+z}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x-3y=2}\\{2x+y=5}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{1}{2}x+\frac{1}{3}y=2}\\{\frac{1}{3}x-\frac{1}{2}y=3}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 5个 | C. | 6个 | D. | 7个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com