精英家教网 > 初中数学 > 题目详情
19.阅读下面材料:
在第九章的学习中,我们认识了完全平方公式,即(a±b)2=a2±2ab+b2,并把形如a2±2ab+b2的式子称为完全平方式.
把形如ax2+bx+c(a≠0)的二次三项式(或其一部分)配成完全平方式的过程叫做配方.配方的基本形式是完全平方公式的逆用,即a2±2ab+b2=(a+b)2
例如:对于x2-2x+4配方
①选取二次项和一次项配方:x2-2x+4=x2-2x+1+3=(x-1)2+3
②选取二次项和常数项配方:x2-2x+4=x2-4x+4+2x=(x-2)2+2x或x2-2x+4=x2+4x+4-2x=(x+2)2-6x
③选取一次项和常数项配方:x2-2x+4=$\frac{1}{4}{x}^{2}$$-2x+4+\frac{3}{4}{x}^{2}$=($\frac{1}{2}x-2$)2$+\frac{3}{4}{x}^{2}$
根据上述材料,解决下列问题:
(1)把4x2+1配成一个完全平方式,请你添加一单项式,使它成为一个完全平方式,则添加的单项式可以是4x(只需添加一个你认为正确的结论);
(2)写出x2+4x+9的两种不同配方形式;
(3)若4x2+y2-4x+6y+10=0,求x、y的值.

分析 (1)将4x2+1写成(2x)2+12可知需配上2•(2x)•1即4x;
(2)可分别选取二次项和一次项、选取二次项和常数项配方;
(3)将10拆成1+9后4x2-4x+1、y2+6y+9构成完全平方式,根据非负数性质可得x、y的值.

解答 解:(1)4x2+1=(2x)2+2•(2x)•1+12=(2x+1)2
故添加的单项式可以为:4x;
(2)①选取二次项和一次项配方:x2+4x+9=x2+4x+4+5=(x+2)2+5;
②选取二次项和常数项配方:x2+4x+9=x2+6x+9-2x=(x+3)2-2x;
(3)由题意得:(2x-1)2+(y+3)2=0,
∴2x-1=0,y+3=0,
解得:x=$\frac{1}{2}$,y=-3.
故答案为:(1)4x.

点评 本题主要考查完全平方公式的运用,熟练掌握完全平方公式的构成特点是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图2所示).将纸片△AC1D1沿直线D2B(A→B方向)平移(点A,D1,D2,B始终在同一直线上),当D1与点B重合时,停止平移.在平移的过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示位置时,猜想D1E与D2F的数量关系,并说明理由.
(2)设平移距离D2D1为x,△AC1D1和△BC2D2重复部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x,使得重复部分面积等于原△ABC纸片面积的$\frac{3}{8}$?若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.已知平行四边形ABCD中,∠A=2∠B,则∠C=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,-1),N为线段CD上一点(不与C、D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.不等式$-\frac{1}{2}≤\frac{1-0.6x}{-3}≤\frac{2}{3}$的整数解的个数为(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简再求值:$\frac{a}{a+2}-\frac{{a}^{2}-1}{{a}^{2}+2a}÷\frac{a-1}{a}$,其中a=$\sqrt{5}$-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.使分式$\frac{x+3}{2x-8}$有意义的x值是(  )
A.x=4B.x=-3C.x≠4D.x=≠-3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,BE⊥AC于点E,AD⊥BC于点D,连接DE.
(1)如图1,若AD=3,AB=BC=5,求ED的长;
(2)如图2,若∠ABC=45°,求证:CE+EF=$\sqrt{2}$ED;
(3)如图3,若∠ABC=45°,现将△ADC沿AC边翻折得到△AGC,连接EG、DG.猜想线段AE、DG、BE之间的数量关系,写出关系式,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,x=60,y=50.

查看答案和解析>>

同步练习册答案