精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点A在抛物线yx22x+2上运动.过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为_____

【答案】1

【解析】

先利用配方法得到抛物线的顶点坐标为(11),再根据矩形的性质得BDAC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1,从而得到BD的最小值.

yx22x+2=(x12+1

∴抛物线的顶点坐标为(11),

∵四边形ABCD为矩形,

BDAC

ACx轴,

AC的长等于点A的纵坐标,

当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1

∴对角线BD的最小值为1

故答案为:1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c满足下表:下列说法:①该函数图像为开口向下的抛物线;②该函数图像的顶点坐标为:(1,3);③方程ax2+bx+c=-223之间存在一个根;④A(-2018,m),B(2019,n)在该二次函数图像上,则m>n.其中正确的是_______(只需写出序号).

x

-1

0

1

2

y

-5

1

3

1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G

(1)求证:△BC1F∽△AGC1

(2)若C1AB的中点,AB=6,BC=9,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(8,4),点C的坐标为(3,4),连接AB、BC、OC

(1)求证四边形OABC是菱形;

(2)直线l过点C且与y轴平行,将直线l沿x轴正方向平移,平移后的直线交x轴于点P.

①当OP:PA=3:2时,求点P的坐标;

②点Q在直线1上,在直线l平移过程中,当COQ是等腰直角三角形时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角坐标平面内,小明站在点A(﹣100)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC2米,则小明在y轴上的盲区(即OE的长度)为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,RtABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.

解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于ADBD的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若ACBC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,已知直线y=-x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).

(1)求经过A,B,C三点的抛物线的解析式;

(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于AB两点,抛物线y=x2+bx+c经过AB两点,点C是抛物线与x轴的另一个交点(与A点不重合).

1)求抛物线的解析式;

2)求ABC的面积;

3)在抛物线的对称轴上,是否存在点M,使ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

同步练习册答案