精英家教网 > 初中数学 > 题目详情
19.如图,在边长为6$\sqrt{2}$的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,过点C作EG的垂线CH,垂足为点H,连接BH,BH=8.有下列结论:
①∠CBH=45°;②点H是EG的中点;③EG=4$\sqrt{10}$;④DG=2$\sqrt{2}$
其中,正确结论的个数是(  )
A.1B.2C.3D.4

分析 连接CG,作HF⊥BC于F,HO⊥AB于O,证明△CBE≌△CDG,得到△ECG是等腰直角三角形,证明∠GEC=45°,根据四点共圆证明①正确;根据等腰三角形三线合一证明②正确;根据等腰直角三角形的性质和勾股定理求出EG的长,得到③正确;求出BE的长,根据DG=BE,求出BE证明④正确.

解答 解:连接CG,作HF⊥BC于F,HO⊥AB于O,
在△CBE和△CDG中,
$\left\{\begin{array}{l}{CB=CD}\\{∠CBE=∠CDG}\\{BE=DG}\end{array}\right.$,
∴△CBE≌△CDG,
∴EC=GC,∠GCD=∠ECB,
∵∠BCD=90°,
∴∠ECG=90°,
∴△ECG是等腰直角三角形,
∵∠ABC=90°,∠EHC=90°,
∴E、B、C、H四点共圆,
∴∠CBH=∠GEC=45°,①正确;
∵CE=CG,CH⊥EG,
∴点H是EG的中点,②正确;
∵∠HBF=45°,BH=8,
∴FH=FB=4$\sqrt{2}$,又BC=6$\sqrt{2}$,
∴FC=2$\sqrt{2}$,
∴CH=$\sqrt{H{F}^{2}+F{C}^{2}}$=2$\sqrt{10}$,
∴EG=2CH=4$\sqrt{10}$,③正确;
∵CH=2$\sqrt{10}$,∠HEC=45°,
∴EC=4$\sqrt{5}$,
∴BE=$\sqrt{E{C}^{2}-B{C}^{2}}$=2$\sqrt{2}$,
∴DG=2$\sqrt{2}$,④正确,
故选:D.

点评 本题考查的是正方形的性质、等腰直角三角形的性质、勾股定理的运用,根据正方形的性质和等腰直角三角形的性质证明三角形全等是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.在△ABC中,DE∥BC,$\frac{AD}{AB}=\frac{1}{2}$,且S△ABC=8cm2,那么S△ADE=2cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,二次函数y=x2+bx+c的图象分别与x轴、y轴相交于A、B、C三点,其对称轴与x轴、线段BC分别交于点E、点F,连接CE,已知点A(-1,0),C(0,-3).
(1)求出该二次函数解析式及其顶点D的坐标;
(2)求出点B的坐标;
(3)当y随x增大而减小时,x的取值范围是x<1;
(4)直接写出△CEF的面积是1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在平面直角坐标系中,O为原点,A为x轴正半轴上的动点,经过点A(t,0)作垂直于x轴的直线l,在直线l上取点B,点B在第一象限,AB=4,直线OB:y1=kx(k为常数).
(1)当t=2时,求k的值;
(2)经过O,A两点作抛物线y2=ax(x-t)(a为常数,a>0),直线OB与抛物线的另一个交点为C.
①用含a,t的式子表示点C的横坐标;
②当t≤x≤t+4时,|y1-y2|的值随x的增大而减小;当x≥t+4时,|y1-y2|的值随x的增大而增大,求a与t的关系式并直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:如图,在等腰直角△ABC中,∠BAC=90°,BD平分∠ABC,交AC于点D,过C作CE⊥BD,交BD的延长线于点E,交BA的延长线于点F,连接DF.
(1)求证:BD=CF;
(2)若CE=4,求△BDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,正方形ABCD中,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连接BE,过点C作CF⊥BE于F,连接OF,已知EF=1,则OF的长为3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.画出数轴,把下列各数在数轴上表示出来,并用“<”号连接起来:2,-1.5,0,-4,$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列计算不正确的是(  )
A.(-3)0=-1B.3.8×10-5=0.000038
C.20020=20030D.($\frac{1}{4}$)-2=16

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知圆的半径是2$\sqrt{3}$,则该圆的内接正六边形的面积是18$\sqrt{3}$.

查看答案和解析>>

同步练习册答案