精英家教网 > 初中数学 > 题目详情
4.如图,正方形ABCD中,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连接BE,过点C作CF⊥BE于F,连接OF,已知EF=1,则OF的长为3$\sqrt{2}$.

分析 首先在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则可证得△OFG是等腰直角三角形,设CE=x,利用勾股定理可得BE的长,由射影定理列方程,求得EF与CF的长,继而求得FG的长,则可求得答案.

解答 解:如图,在BE上截取BG=CF,连接OG,
∵Rt△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG与△OCF中,
$\left\{\begin{array}{l}{OB=OC}\\{∠OBG=∠OCF}\\{BG=CF}\end{array}\right.$,
∴△OBG≌△OCF(SAS),
∴OG=OF,∠BOG=∠COF,BG=CF,
∴OG⊥OF,
设CE=x,则DE=2EC=2x,
∴BC=CD=3x,
在Rt△BCE中,
∴BE=$\sqrt{B{E}^{2}+C{E}^{2}}$=$\sqrt{10}$x,
∵EF=1,
∵CE2=EF•BE,
∴x2=$\sqrt{10}$x,
∴x=$\sqrt{10}$,
∴CE=$\sqrt{10}$,BF=BE-EF=10-1=9,
∵CF2=BF•EF=9,
∴CF=3,
∴BG=3,
∴FG=BE-BG-EF=10-3-1=6,
∴OF=$\frac{\sqrt{2}}{2}$FG=3$\sqrt{2}$.
故答案为:3$\sqrt{2}$.

点评 此题考查了正方形的性质、等腰直角三角形的性质、勾股定理以及射影定理.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.如图,△ABC中,E、F、D分别是AB、AC、BC上的点,且满足$\frac{AE}{EB}=\frac{AF}{FC}=\frac{2}{3}$,则S△ABC:S△EFD=25:6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.问题情境
如图1,在△AOB与△DOE中,∠AOB=∠DOE=90°,OA=OB,OD=OE,当点D,E分别在△AOB的边OA,OB上时,结论(1)AD=BE和(2)AD⊥BE都成立.
问题探究
如图2,若当点D,E不在△AOB的边OA,OB上时,上述结论是否成立?理由.
问题延伸
如图3,将问题情境中的条件,∠AOB=∠DOE=90°换为∠AOB=∠DOE=40°,且点D,E不在△AOB的边OA,OB上时,上述结论是否成立?理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在边长为6$\sqrt{2}$的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,过点C作EG的垂线CH,垂足为点H,连接BH,BH=8.有下列结论:
①∠CBH=45°;②点H是EG的中点;③EG=4$\sqrt{10}$;④DG=2$\sqrt{2}$
其中,正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在△ABC中,∠BAC=90°,AB=AC.
(1)如图,若A,B两点的坐标分别是A(0,4),B(-2,0),求C点的坐标.
(2)如图,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q为∠FPC与∠PFC的角平分线的交点,若点P运动时,点Q是否恒在∠ABC的平分线上?若在,请说明,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,四边形OABC放置在平面直角坐标系中,AB∥CO,OA所在直线为x轴,OC所在直线为y轴,反比例函数y=$\frac{k}{x}({k>0,x>0})$的图象经过AB的中点D,并且与CB交于点E,已知$\frac{CE}{CB}=\frac{1}{3},OC=\frac{7}{2}$.则AB的长等于(  )
A.2.5B.2C.1.5D.1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若|x|=5,|y|=3,则|x-y|等于(  )
A.2B.±8C.8或2D.±8或±2

查看答案和解析>>

同步练习册答案