【题目】如图,O是等边△ABC的外心,BO的延长线和⊙O相交于点D,连接DC,DA,OA,OC.
(1)求证:△BOC≌△CDA;
(2)若AB=,求阴影部分的面积.
【答案】(1)证明见解析;(2)S阴影部分=π﹣
.
【解析】试题分析:
(1)如图1,由点O是等边△ABC的外心可证得∠1=∠2=30°,由圆周角定理可得:∠5=∠1=30°,∠6=∠2=30°,由OB=OC可得∠3=∠2=30°,结合BC=AC可用“ASA”证得△BOC≌△CDA;
(2)如图2,过点O作OH⊥AB于点H,则由此可得:BH=AB=
,∠OHB=90°,设OB=
,则由∠1=30°可得OH=
,在Rt△OHB中由勾股定理建立方程,解方程即可求得
;由OB=OA可得∠OAB=∠1=30°,从而可得∠AOB=120°,这样由S阴影 =S扇形AOB-S△AOB即可求出阴影部分的面积了.
试题解析:
(1)证明:如图1所示:
∵O是等边△ABC的外心,
∴BD垂直平分AC
∴∠1=∠2=30°,
∴∠1=∠5=30°,∠2=∠6=30°
∵BO=CO
∴∠2=∠3=30°
∵BC=AC
∴△BOC≌△CDA(SAS);
(2)如图2所示,作OH⊥AB于H,
∴BH=AB=
,∠OHB=90°,
设OB= ,∵∠1=30°,
∴OH= ,
∴在Rt△OHB中,由勾股定理可得: ,解得:
,则OH=
.
∵∠1=30°,OA=OB,
∴∠BAO=∠1=30°,
∴∠AOB=180°-30°-30°=120°,
∴S阴影部分=S扇形AOB﹣S△AOB.
科目:初中数学 来源: 题型:
【题目】某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:
(1)m= ,a= ;
(2)补全频数直方图;
(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,以点
为圆心,
长为半径画弧交
于点
,再分别以点
、
为圆心,大于
的相同长为半径画弧,两弧交于点
,连接
并延长交
于点
,连接
,则所得四边形
是菱形.
(1)根据以上尺规作图的过程,求证:四边形是菱形.
(2)若菱形的周长为16,
,求菱形
的面积及
的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】4月22日是世界地球日,为了增强学生环保意识,某中学八年级举行了“环保知识竞赛”活动,为了了解本次竞赛情况,只抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频数分布表和频数分布直方图,解答下列问题:
分组 | 频数 | 频率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 8 | 0.16 |
70.5~80.5 | 10 | 0.20 |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | a | b |
(1)a= b= ;
(2)补全频数分布直方图;
(3)该校八年级有500名学生,估计八年级学生中竞赛成绩高于80分的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.
(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是 ;
(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线y=x-3交x轴于点B,交y轴于点C,抛物线经过点A(-1,0),B,C三点,点F在y轴负半轴上,OF=OA.
(1)求抛物线的解析式;
(2)在第一象限的抛物线上存在一点P,满足S△ABC=S△PBC,请求出点P的坐标;
(3)点D是直线BC的下方的抛物线上的一个动点,过D点作DE∥y轴,交直线BC于点E,①当四边形CDEF为平行四边形时,求D点的坐标;
②是否存在点D,使CE与DF互相垂直平分?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫做这个四边形的“巧分线”,这个四边形叫“巧妙四边形”,若一个四边形有两条巧分线,则称为“绝妙四边形”.
(1)下列四边形一定是巧妙四边形的是 ;(填序号点①平行四边形;②矩形;③菱形;④正方形.
初步应用
(2)在绝妙四边形ABCD中,AC垂直平分BD,若∠BAD=80°,则∠BCD= ;
深入研究
(3)如图,在梯形ABCD中,AD∥BC,AB=AD=CD,∠B=72°.求证:梯形ABCD是绝妙四边形.
(4)在巧妙四边形ABCD中,AB=AD=CD,∠A=90°,AC是四边形ABCD的巧分线,请直接写出∠BCD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分6分)
(1)(3分)(-3)2-|-|+(3.14-x)0
(2)(4分)先化简,再求值:[(2x-y)2+(2x-y)(2x+y)]÷(4x),其中x=2,y=-1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:善于思考的小明在解方程组时,采用了一种“整体代换”的解法,解法如下:
解:将方程②8x+20y+2y=10,变形为 2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,则 y=﹣1;把 y=﹣1 代入①得,x=4,所以方程组的解为: 请你解决以下问题:
(1)试用小明的“整体代换”的方法解方程组
(2)已知 x、y、z,满足试求 z 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com