【题目】已知直线与x轴和y轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.
(1)如图,当点M与点A重合时,求:
①抛物线的解析式;
②点N的坐标和线段MN的长;
(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.
【答案】(1)①②N(,-4),(2)存在.点M的坐标为(2,-1)或(4,3)
【解析】
(1)①由直线与x轴和y轴分别交于点A和点B,求出点A、B的坐标,由顶点M与点A重合,根据二次函数的性质求出顶点解析式.
②联立和,求出点N的坐标,过N作NC⊥x轴,由勾股定理求出线段MN的长.
(2)根据相似三角形的性质,可得关于m或n的方程,可得M点的坐标,要分类讨论,以防遗漏.
解:(1)①∵直线与x轴和y轴分别交于点A和点B,
∴A(,0),B(0,-5).
当顶点M与点A重合时,∴M(,0).
∴抛物线的解析式是:,即.
②∵N是直线与在抛物线的交点,
∴,解得或.
∴N(,-4).
如图,过N作NC⊥x轴,垂足为C.
∵N(,-4),∴C(,0)
∴NC=4.MC=OM-OC=.
∴.
(2)设M(m,2m-5),N(n,2n-5).
,
,
则OB=2OA,,
当∠MON=90°时,
∵AB≠MN,且MN和AB边上的高相等,因此△OMN与△AOB不能全等,
∴△OMN与△AOB不相似,不满足题意.
当∠OMN=90°时,,即,解得,
则m2+(2m-5)2=()2,解得m=2,
∴M(2,-1);
当∠ONM=90°时,,即,解得,
则n2+(2n-5)2=()2,解得n=2,
解得:m=4,
则M的坐标是M(4,3).
故M的坐标是:(2,-1)或(4,3).
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为( )
A.3B.C.4D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,E,F在BC、CD上,以EF为直径的半圆切AD于G(如图1).
(1)求证:CE=2DG;
(2)若F为DC中点,连AF交半圆于P(如图2),且AB=4,AD=5,求PF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】植树节期间,某校倡议学生利用双休日“植树”劳动,为了解同学们劳动情况.学校随机调查了部分学生的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回顾下列:
(1)通过计算,将条形图补充完整;
(2)扇形图形中“1.5小时”部分圆心角是 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】主题为“绿色生活,美丽家园”的世界园艺博览会,将于2019年4月29日至2019年10月7日在中国北京市延庆区举行.据介绍,在国际竞赛区,举办牡丹、兰花、月季、组合盆栽、盆景、菊花六类专项国际竞赛(参赛植物以盆为单位).
(1)求参加竞赛的共有多少盆植物?
(2)补全频数分布直方图;
(3)求“从参赛作品中任选一盆植物,是月季或盆栽”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)
(1)求AB的长(精确到0.01米);
(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形中,过点作于点,点在边上,,连接,.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com