【题目】如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,.….按照这样的运动规律,点第17次运动到点( )
A.B.C.D.
【答案】A
【解析】
令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1)”,根据该规律即可得出结论.
令P点第n次运动到的点为Pn点(n为自然数).
观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,
∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).
∵17=4×4+1,
∴P第17次运动到点(17,1).
故选:A.
科目:初中数学 来源: 题型:
【题目】为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)
根据表、图提供的信息,解决以下问题:
(1)计算出表中a、b的值;
(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;
(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC边上的两个动点,点P从点A开始沿A→B方向运动,且速度为1 cm,点Q从点B开始沿B→C方向运动,且速度为2 cm/s,它们同时出发,设运动的时间为t s.
(1)运动几秒时,△APC是等腰三角形?
(2)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当,时,∵,∴,当且仅当时取等号.请利用上述结论解决以下问题:
(1)当时,的最小值为_______;当时,的最大值为__________.
(2)当时,求的最小值.
(3)如图,四边形ABCD的对角线AC ,BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为( )
A. 80° B. 70° C. 60° D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】、两地之间有一条直线跑道,甲,乙两人分别从、同时出发,相向而行均速跑步,且乙的速度是甲速度的80%,当甲,乙两人分别到达地,地后立即掉头往回跑,甲的速度保持不变,乙的速度提高25%(仍保持匀速前行).甲,乙两人之间的距离(米)与跑步时间(分钟)之间的关系如图所示,则他们在第二次相遇时距地___________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料:对于平面直角坐标系中的任意两点,,我们把叫做,两点间的距离公式,记作,如:,,则,两点的距离为
请根据以上的阅读材料,解答下列问题:
(1)当,的距离,求出的值.
(2)若在平面内有一点,使有最小值,求出它最小值和此时的范围.
(3)若有最小值,请直接写出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=,求EB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.
(1)求B点到直线CA的距离;
(2)执法船从A到D航行了多少海里?(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com