精英家教网 > 初中数学 > 题目详情

【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:

(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;

拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

【答案】(1)是,理由见解析;(2)作图见解析;(3.

【解析】试题分析:(1)要证明点E是四边形ABCDAB边上的相似点,只要证明有一组三角形相似就行,很容易证明△ADE∽△BEC,所以问题得解.

2)根据两个直角三角形相似得到强相似点的两种情况即可.

3)因为点E是梯形ABCDAB边上的一个强相似点,所以就有相似三角形出现,根据相似三角形的对应线段成比例,可以判断出AEBE的数量关系,从而可求出解.

解:(1)点E是四边形ABCD的边AB上的相似点.

理由:∵∠A=55°

∴∠ADE+∠DEA=125°

∵∠DEC=55°

∴∠BEC+∠DEA=125°

∴∠ADE=∠BEC.(2分)

∵∠A=∠B

∴△ADE∽△BEC

E是四边形ABCDAB边上的相似点.

2)作图如下:

3E是四边形ABCM的边AB上的一个强相似点,

∴△AEM∽△BCE∽△ECM

∴∠BCE=∠ECM=∠AEM

由折叠可知:△ECM≌△DCM

∴∠ECM=∠DCMCE=CD

∴∠BCE=∠BCD=30°

∴BE=CE=AB

Rt△BCE中,tan∠BCE==tan30°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若任意一个三位数t的百位数字为a,十位数字为b,个位数字为c,那么可将这个三位数表示为ta0),且满足t100a+10b+c,我们把三位数各位上的数字的乘积叫做原数的积数,记为Pt).重新排列一个三位数各位上的数字,必可以得到一个最大的三位数和一个最小的三位数,此最大三位数与最小三位数之差叫做原数的差数,记为Ft),例如:264的积数P264)=48,差数F264)=642246396

1)根据以上材料:F258)=   

2)若一个三位数t,且Pt)=0Ft)=135,求这个三位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx2x轴交于AB两点,与y轴交于C点,且A10).

1)求抛物线的解析式及顶点D的坐标;

2)判断△ABC的形状,证明你的结论;

3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某次数学单元测试,七年级第一小组共10名同学,小组长把超过班级平均分的部分记为,不足的部分记为,记录如表:

与平均分的差值(分)

15

9

0

3

12

17

人数

1

2

1

2

3

1

根据表格数据解答下列问题:

1)第一小组同学的平均分比班级平均分高还是低?高或低多少分?

2)若该班这次测试的平均分为80分,求第一小组10名同学的总分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】京张高铁是2022年北京冬奥会的重要交通保障设施. 如图所示,京张高铁起自北京北站,途经清河、沙河、吕平等站,终点站为张家口南站,全长174千米.

1)根据资料显示,京张高铁的客运价格拟定为0. 4元(人·千米),可估计京张高铁单程票价约为_________元(结果精确到个位);

2)京张高铁建成后,将是世界上第一条设计时速为350千米/时的高速铁路. 乘高铁从北京到张家口的时间将缩短至1小时,如果按此设计时速运行,那么每站(不计起始站和终点站)停靠的平均时间是多少分钟?(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90°ABBC,点D是线段AB上的一点,连接CD,过点BBGCD,分别交CDCA于点EF,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①②若点DAB的中点,则AF=AB③当BCFD四点在同一个圆上时,DFDB;④若,,其中正确的结论序号是( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD交于点O,将一个三角板的直角顶点放置于O处,使其两条直角边分别位于OC的两侧,若OC刚好平分∠BOF,∠BOE=2COE,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在已知的ABC,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MNAB于点D,连接CD.CD=AC,A=50°,则∠ACB的度数为(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线相交于的平分线,.

1)图中除直角外,还有相等的角吗?请写出两对.

____________

2)如果

①那么根据______可得______

②因为的平分线,所以______=______

③求的度数.

查看答案和解析>>

同步练习册答案