【题目】已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.
【答案】(1)y=x2+2x﹣3;(2)(0,-3)或(-2,-3)或(,3)或(,3)
【解析】试题分析:(1)根据抛物线与x的两交点坐标,则可设交点式y=a(x+1)(x-3),然后把C点坐标代入计算出a即可.
(2)首先算出AB的长,再设P(m,n),根据△ABP的面积为6可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标.
解:(1)设抛物线的解析式为y=a(x1)(x+3),
把C(0,3)代入得a×(1)×3=3,
解得a=1,
所以这个二次函数的解析式为y=(x1)(x+3)=x2+2x3.
(2)∵A(1,0),B(﹣3,0)
∴AB=4,
设P(m,n),
∵△ABP的面积为6,
∴AB|n|=6,
解得:n=±3,
当n=3时,m2+2m﹣3=3,
解得:m=或,
当n=﹣3时,m2+2m﹣3=﹣3,
解得:m=0或-2
故P(0,-3)或(-2,-3)或(,3)或(,3)
科目:初中数学 来源: 题型:
【题目】已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=﹣x2+2x+5 图象的一部分,其中x为爆炸后经过的时间(秒),y为残片离地面的高度(米),请问在爆炸后1秒到6秒之间,残片距离地面的高度范围为( )
A. 0米到8米 B. 5米到8米 C. 到8米 D. 5米到米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从BA的延长线上距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了 秒。
(1)求AD的长;
(2)直接写出用含有 的代数式表示PE=;
(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出 值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,给出如下定义:形如y=(x﹣m)(x﹣m+1)与y=(x﹣m)(x﹣m﹣1)的两个二次函数的图象叫做兄弟抛物线.
(1)试写出一对兄弟抛物线的解析式.
(2)若二次函数y=x2﹣x(图象如图)与y=x2﹣bx+2的图象是兄弟抛物线.
①求b的值.
②若直线y=k与这对兄弟抛物线有四个交点,从左往右依次为A,B,C,D四个点,若点B,点C为线段AD三等分点,求线段BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是一个等腰直角三角形,DEFG是其内接正方形,H是正方形的对角线交点;那么,由图中的线段所构成的三角形中相互全等的三角形的对数为( )
A.12
B.13
C.26
D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的面积为S ,⊙O是它的外接圆,点P是弧BC的中点.(1)试判断过点C所作⊙O的切线与直线AB是否相交,并证明你的结论.(2)设直线CP与AB相交于点D,过点B作BE⊥CD,垂足为E,证明BE是⊙O的切线,并求△BDE的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com