【题目】已知反比例函数,(k为常数,k≠1).
(1)若点A(1,2)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;
(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.
【答案】(1)k=3;(2)k<1;(3)点C不在函数的图象上.
【解析】试题分析:(1)把点A的坐标代入函数解析式,利用待定系数法求解即可;
(2)根据反比例函数图象的性质得到:k-1<0,由此求得k的取值范围;
(3)把点B、C的坐标代入函数解析式进行一一验证.
试题解析:
(1)∵点A(1,2)在这个函数的图象上,
∴k﹣1=1×2,
解得k=3;
(2)∵在函数图象的每一支上,y随x的增大而增大,
∴k﹣1<0,
解得k<1;
(3)∵k=13,有k﹣1=12,
∴反比例函数的解析式为.
将点B的坐标代入,可知点B的坐标满足函数关系式,
∴点B在函数的图象上,
将点C的坐标代入,由5≠,可知点C的坐标不满足函数关系式,
∴点C不在函数的图象上.
科目:初中数学 来源: 题型:
【题目】江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
(1)直接写出y甲,y乙关于x的函数关系式;
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x 轴于点A,点D在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(﹣2,4),试求MC的长及直线DC的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠1=∠2,∠B=∠C,则BD=CE.请说明理由:
解:∵∠1=∠2
∴∠1+∠BAC=∠2+ .
即 =∠DAB.
在△ABD和△ACE中,
∠B= (已知)
∵AB= (已知)
∠EAC= (已证)
∴△ABD≌△ACE( )
∴BD=CE( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;
(1)请你解释图中点B的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的y1与x之间的函数解析式;
(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com