【题目】2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;
(1)请你解释图中点B的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的y1与x之间的函数解析式;
(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?
【答案】(1)当产量为130kg时,葵花籽每千克的加工成本与销售价相同,都是9.8元.(2)y1=0.06x+2.(3)该葵花籽的产量为75kg时,该企业获得的利润最大;最大利润为225元.
【解析】试题分析:(1)图中点B的横坐标、纵坐标的实际意义为:当产量为130kg时,葵花籽每千克的加工成本与销售价相同,都是9.8元.
(2)设线段AB所表示的y1与x之间的函数解析式为y1=k1x+b1,∵A点坐标为(0,2),B点坐标为(130,9.8),∴有,解得:.∴线段AB所表示的y1与x之间的函数解析式y1=0.06x+2.
(3)当0<x≤90时,销售价y2(元)与产量x(kg)之间的函数图象为线段CD.设线段CD所表示的y2与产量x之间的函数解析式为y2=k2x+b2,∵C点坐标为(0,8),D点坐标为(90,9.8),∴有,解得:.∴线段CD所表示的y2与x之间的函数解析式y2=0.02+8.令企业获得的利润为W,则有W=x(y2﹣y1)=﹣0.04x2+6x=﹣0.04(x﹣75)2+225,故当x=75时,W取得最大值225.答:该葵花籽的产量为75kg时,该企业获得的利润最大;最大利润为225元.
科目:初中数学 来源: 题型:
【题目】已知反比例函数,(k为常数,k≠1).
(1)若点A(1,2)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;
(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店选用甲、乙两种糖果混合成杂拌糖果后出售,甲的价格为每千克 28 元,乙的价格为每千克 20 元,为使这种杂拌糖果的售价是每千克 25 元,要配置这种杂拌糖果 100 千克,问要用这两种糖果各多少千克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是平面直角坐标系及其中的一条直线,该直线还经过点C(3,﹣10).
(1)求这条直线的解析式;
(2)若该直线分别与x轴、y轴交于A、B两点,点P在x轴上,且S△PAB=6S△OAB,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com