分析 (1)点C为正方形的一个顶点,那么可根据对角线平分一组对角,作出∠C的平分线,交AB于一点,即为另一顶点;作出这两个顶点连线的垂直平分线交AC,BC于两点就得到了正方形;
(2)利用正方形的各边相等,及对边平行得到对应边成比例,各比例线段主要用正方形边长表示,即可求解.
解答 解:(1)作出∠C的平分线,交AB于一点E,即为另一顶点;作出CE的垂直平分线交AC,BC于点F,D就得到了正方形;DE,DF即为截线;![]()
(2)设正方形的边长为xcm,
∵DE∥AC
∴DE:AC=BD:BC
即x:80=(60-x):60,
解得x=$\frac{240}{7}$,
答:正方形的边长为$\frac{240}{7}$cm.
点评 本题主要应用了正方形的对角线性质得到相应的正方形;利用平行线分线段成比例定理得到正方形边长.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com