精英家教网 > 初中数学 > 题目详情
18.解方程组:$\left\{\begin{array}{l}{3x+2y=14}\\{5x-y=6}\end{array}\right.$.

分析 方程组利用加减消元法求出解即可.

解答 解:$\left\{\begin{array}{l}{3x+2y=14①}\\{5x-y=6②}\end{array}\right.$,
①+②×2得:13x=26,即x=2,
把x=2代入②得:y=4,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$.

点评 此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,点(-2,2015)在第二象限.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-$\frac{1}{100}$(x-60)2+41(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-$\frac{99}{100}$(100-x)2+$\frac{294}{5}$(100-x)+160(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.分解因式:x2-$\frac{1}{4}{y^2}$=(x+$\frac{1}{2}$y)(x-$\frac{1}{2}$y).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在平面直角坐标系中,点P(2,-1)关于y轴对称的点Q的坐标为(  )
A.(-2,-1)B.(-2,1)C.(2,1)D.(1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=-8x;
(2)y=$\frac{8}{x}$;
(3)y=8x2
(4)y=8x-4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程组:$\left\{\begin{array}{l}{8359x+1641y=28359}\\{1641x+8359y=21641}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)(4a3b-10b3)+(-3a2b2+10b3);
(2)(4x2y-5xy2)-(3x2y-4xy2);
(3)5a2-[a2+(5a2-2a)-2(a2-3a)];
(4)15+3(1-a)-(1-a-a2)+(1-a+a2-a3);
(5)(4a2b-3ab)+(-5a2b+2ab);
(6)(6m2-4m-3)+(2m2-4m+1);
(7)(5a2+2a-1)-4(3-8a+2a2);
(8)3x2-[5x-($\frac{1}{2}$x-3)+2x2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB,求证:AD=CD+AB.

查看答案和解析>>

同步练习册答案