【题目】如图,在△ABC中,∠BAC的平分线与BC的中垂线DE交于点E,过点E作AC边的垂线,垂足为N,过点E作AB延长线的垂线,垂足为M.
(1)求证:BM=CN;
(2)若,AB=2,AC=8,求BM的长.
【答案】(1)证明见解析;(2)3.
【解析】
(1)因为ED是BC的垂直平分线,那么BE=CE,而AE是∠BAC的平分线,EM⊥AB,EN⊥AC,根据角平分线的性质可得EM=EN,再根据HL可判定Rt△BME≌Rt△CNE,从而有BM=CN.
(2)同(1)中方法证明Rt△AME≌Rt△ANE(HL),可得:AM=AN,又因为AM= AB+BM, AN= AC-CN,即可解答.
证明:连接BE,CE,如图,
∴DE是BC的垂直平分线,
∴BE=CE,
∵AE是∠BAC的平分线,EM⊥AB,EN⊥AC,
∴EM=EN,
在Rt△BME和Rt△CNE中,
∴Rt△BME≌Rt△CNE(HL),
∴BM=CN
(2)由(1)得:EM=EN,
在Rt△AME和Rt△ANE中,
∴Rt△AME≌Rt△ANE(HL),
∴AM=AN,又∵AM= AB+BM, AN= AC-CN
∴AB+BM=AC-CN
∴2+ BM=8-CN, 又∵BM=CN
∴BM=CN =3
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2;则点B的对应点B1的坐标是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了全面推进素质教育,增强学生体质,丰富校园文化生活,高新区某校将举行春季特色运动会,需购买A,B两种奖品.经市场调查,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品1件和B种奖品3件,共需55元.
(1)求A、B两种奖品的单价各是多少元;
(2)运动会组委会计划购买A、B两种奖品共100件,购买费用不超过1160元,且A种奖品的数量不大于B种奖品数量的3倍,运动会组委会共有几种购买方案?
(3)在第(2)问的条件下,设计出购买奖品总费用最少的方案,并求出最小总费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套 ,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如12=,20=,28=,……,因此12,20,28这三个数都是奇巧数。
(1)52,72都是奇巧数吗?为什么?
(2)设两个连续偶数为2n,2n+2(其中n为正整数),由这两个连续偶数构造的奇巧数是8的倍数吗?为什么?
(3)研究发现:任意两个连续“奇巧数”之差是同一个数,请给出验证。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空:
如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),且∠1=∠4( )
∴∠2=∠4 (等量代换)
∴CE∥BF ( )
∴∠ =∠3( )
又∵∠B=∠C(已知),∴∠3=∠B(等量代换)
∴AB∥CD ( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.
(1)求此二次函数的关系式;
(2)P为二次函数y=ax2+bx+c图象上一点,且S△ABP=S△ABC,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若该方程有一根为2,求a的值及方程的另一根;
(2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com