分析 (1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;
(2)根据相应的度数判断出△AOB的形状,再利用勾股定理得出AB的长.
解答 解:(1)根据点N在平面内的位置极为N(6,30)可知,ON=6,∠XON=30°.
故答案为:6,30°;
(2)如图所示:∵A(5,30),B(12,120),
∴∠BOX=120°,∠AOX=30°,
∴∠AOB=90°,
∵OA=5,OB=12,
∴在Rt△AOB中,AB=$\sqrt{1{2}^{2}+{5}^{2}}$=13.
点评 此题主要考查了坐标确定位置以及勾股定理,解决本题的关键是理解所给的新坐标的含义.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 与标准质量的差值(单位:g) | -5 | -2 | 0 | 2 | 3 | 7 |
| 袋数 | 3 | 5 | 3 | 2 | 5 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com