精英家教网 > 初中数学 > 题目详情

【题目】用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.

【答案】圆形

【解析】

根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.

围成的圆形场地的面积较大.理由如下:

设正方形的边长为a,圆的半径为R,

∵竹篱笆的长度为48

4a=48,则a=12.即所围成的正方形的边长为12;2π×R=48,

R=,即所围成的圆的半径为

∴正方形的面积S1=a2=144,圆的面积S2=π×(2=

144<

∴围成的圆形场地的面积较大.

故答案为:圆形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,yx成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.

(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;

(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:

方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为若点在该抛物线上,则

其中正确的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,以边AB为直径作O,交斜边BCDE在弧上,连接AEEDDA,连接AEEDDA

(1)求证:∠DAC=∠AED

(2)若点E的中点,AEBC交于点F,当BD=5,CD=4时,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)已知二次函数

(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;

(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.

(1)求点A的坐标;

(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若FCD与AED相似,求此二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某果园有棵枇杷树.每棵平均产量为千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵树接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量千克,若设增种棵枇杷树,投产后果园枇杷的总产量为千克,则之间的函数关系式为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生志愿服务小组在学雷锋活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:

每个商品的售价x(元)

30

40

50

每天的销售量y(个)

100

80

60

(1)求yx之间的函数表达式;

(2)设商场每天获得的总利润为w(元),求wx之间的函数表达式;

(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?

查看答案和解析>>

同步练习册答案