精英家教网 > 初中数学 > 题目详情

已知:如图,点A、B在⊙O上,直线AC是⊙O的切线,连接AB交OC于点D,AC=CD.
(1)求证:OC⊥OB;
(2)如果OD=1,tan∠OCA=数学公式,求AC的长.

(1)证明:
∵OA=OB,
∴∠B=∠4.
∵CD=AC,
∴∠1=∠2.
∵∠3=∠2,
∴∠3=∠1.
∵AC是⊙O的切线,
∴OA⊥AC,
∴∠OAC=90°,
∴∠1+∠4=90°,
∴∠3+∠B=90°,
∴∠BOD=90°,
∴OC⊥OB,

解:(2)在Rt△OAC中,∠OAC=90°,
∵tan∠OCA=

∴设AC=2x,则AO=x,
由勾股定理得,OC=3x.
∵AC=CD,
∴AC=CD=2x.
∵OD=1,
∴OC=2x+1.
∴2x+1=3x,
∴x=1,
∴AC=2×1=2.
分析:(1)根据OB=OA求出∠B=∠4,根据AC=CD得出∠1=∠2=∠3,根据切线性质求出∠1+∠4=90°=∠B+∠3,QIUC∠BOD度数即可;
(2)根据锐角三角函数得出OA:AC=2:,设AC=2x,则AO=x,由勾股定理求出OC=3x,得出3x=2x+1,求出x即可.
点评:本题考查了勾股定理,切线的性质,等腰三角形的性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案