【题目】如图,已知抛物线y=ax2-4x+c(a≠0)与反比例函数y=的图象相交于B点,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2-4x+c的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为_______.
【答案】(,0)
【解析】
根据题意作出合适的辅助线,然后求出点B的坐标,从而可以求得二次函数解析式,然后求出点A的坐标,进而求得A'的坐标,从而可以求得直线A'B的函数解析式,进而求得与x轴的交点,从而可以解答本题
解:作点A关于x轴的对称点A',连接A'B,则A'B与x轴的交点即为所求,
∵抛物线y=ax2-4x+c(a0)与反比例函数y= 的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),
∴点B(3,3),
∴
解得,
∴y=x2-4x+6=(x-2)2+2
∴点A的坐标为(2,2),
∴点A'的坐标为(2,-2),
设过点A'(2,-2)和点B(3,3)的直线解析式为y=mx+n
∴
∴直线A'B的函数解析式为y=5x-12,
令y=0,则0=5x-12得x=,
故答案为:()
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,将点A向右平移6个单位长度,得到点B.
(1)直接写出点B的坐标;
(2)若抛物线y=-x2+bx+c经过点A,B,求抛物线的表达式;
(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段AB有且只有一个公共点时,求抛物线顶点横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,将点A向右平移6个单位长度,得到点B.
(1)直接写出点B的坐标;
(2)若抛物线y=-x2+bx+c经过点A,B,求抛物线的表达式;
(3)若抛物线y=-x2+bx+c的顶点在直线y=x+2上移动,当抛物线与线段AB有且只有一个公共点时,求抛物线顶点横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M为正方形ABCD内一点,点N在AD边上,且∠BMN=90°,MN=2MB.点E为MN的中点,点P为DE的中点,连接MP并延长到点F,使得PF=PM,连接DF.
(1)依题意补全图形;
(2)求证:DF=BM;
(3)连接AM,用等式表示线段PM和AM的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线过点A(,-3) 和B(3,0),过点A作直线AC//x轴,交y轴与点C.
(1)求抛物线的解析式;
(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;
(3)抛物线上是否存在点Q,使得?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com