【题目】如图,ABCD中,AB∥x轴,AB=6.点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点G是AD与y轴的交点,点P是CD边上不与点C,D重合的一个动点,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,点P的坐标为______.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与 BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
(2)若AD=4,,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象交
轴于
两点,交
轴于点
,点
的坐标为
,顶点
的坐标为
.
(1)求二次函数的解析式和直线的解析式;
(2)点是直线
上的一个动点,过点
作
轴的垂线,交抛物线于点
,当点
在第一象限时,求线段
长度的最大值;
(3)在抛物线上是否存在异于的点
,使
中
边上的高为
,若存在求出点
的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.
(1)求反比例函数和直线EF的解析式;
(2)求△OEF的面积;
(3)请结合图象直接写出不等式k2x+b﹣>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的对称轴是直线
且与
轴相交于
两点,与
轴交于点
点
的坐标为
.
求抛物线的解析式;
若点
是第一象限内抛物线上一点,过点
作直线
轴于点
交直线
于点
当
时,求四边形
的面积.
在
的条件下,若点
在抛物线上,点
在抛物线的对称轴上,当以点
为顶点的四边形是平行四边形时,求出所有符合条件的点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数yx3的图象与反比例函数y(k为常数,且k0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,等边△ABC的边长为4,点D是BC边上一动点,且CE=BD,连接AD,BE,AD与BE相交于点P,连接PC.则线段PC的最小值等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线
:
与直线
分别交于点
.直线
与
交于点
.记线段
,
围成的区域(不含边界)为
.横,纵坐标都是整数的点叫做整点.
(1)当时,区域
内的整点个数为_____;
(2)若区域内没有整点,则
的取值范围是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将放在每个小正方形的边长为1的网格中,点
,点
,点
均落在格点上.
(1)_________.
(2)请在如图所示的网格中,用无刻度的直尺,画出一个以为底边的等腰
,使该三角形的面积等于
的面积,并简要说明点
的位置是如何找到的(不要求证明)__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com