【题目】已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.
(1)求出数轴上B点对应的数及AC的距离.
(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.
①当P点在AB之间运动时,则BP= .(用含t的代数式表示)
②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.
③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数
【答案】(1)30,120(2)①30﹣3t②5或20③﹣15或﹣48
【解析】
(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;
(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP求解;
②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;
③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.
(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,
∴B点对应的数为60﹣30=30;
∵C点到A点距离是B点到A点距离的4倍,
∴AC=4AB=4×30=120;
(2)①当P点在AB之间运动时,
∵AP=3t,
∴BP=AB﹣AP=30﹣3t.
故答案为30﹣3t;
②当P点是A、B两个点的中点时,AP=AB=15,
∴3t=15,解得t=5;
当B点是A、P两个点的中点时,AP=2AB=60,
∴3t=60,解得t=20.
故所求时间t的值为5或20;
③相遇2次.设Q点在往返过程中经过x秒与P点相遇.
第一次相遇是点Q从A点出发,向C点运动的途中.
∵AQ﹣BP=AB,
∴5x﹣3x=30,
解得x=15,
此时P点在数轴上对应的数是:60﹣5×15=﹣15;
第二次相遇是点Q到达C点后返回到A点的途中.
∵CQ+BP=BC,
∴5(x﹣24)+3x=90,
解得x=,
此时P点在数轴上对应的数是:30﹣3×=﹣48.
综上,相遇时P点在数轴上对应的数为﹣15或﹣48.
科目:初中数学 来源: 题型:
【题目】把宽为2cm 的刻度尺在圆O上移动,当刻度尺的一边EF与圆O相切于A时,另一边与圆的两个交点处的度刻恰好为“2”(C点)和“8”(B点)(单位:cm ),则该圆的半径是( )
A.3 cm
B.3.25 cm
C.2 cm
D.4 cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.
(1)如图1,求证:CD⊥AB;
(2)将△ADC沿CD所在直线翻折,A点落在BD边所在直线上,记为A′点.
①如图2,若∠B=34°,求∠A′CB的度数;
②若∠B=n°,请直接写出∠A′CB的度数(用含n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F
(1)点D在边AB上时,试探究线段BD、AB和AF的数量关系,并证明你的结论;
(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请写出正确结论并证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段MN=8,C是线段MN上一动点,在MN的同侧分别作等边△CMD和等边△CNE.
(1)如图①,连接DN与EM,两条线段相交于点H,求证ME=DN,并求∠DHM的度数;
(2)如图②,过点D、E分别作线段MN的垂线,垂足分别为F、G,问:在点C运动过程中,DF+EG的长度是否为定值,如果是,请求出这个定值,如果不是请说明理由;
(3)当点C由点M移到点N时,点H移到的路径长度为(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:
(1)补全条形图;
(2)写出这20名学生每人植树量的众数和中位数;
(3)估计这240名学生共植树多少棵?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.
(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).
①在直线l上画出A、B两点的位置,并回答:点A运动的速度是 (单位长度/秒);点B运动的速度是 (单位长度/秒).
②若点P为数轴上一点,且PA﹣PB=OP,求的值;
(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的坐标系中,△ABC的三个顶点的坐标依次为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)请在这个坐标系中作出△ABC关于y轴对称的△A1B1C1.
(2)分别写出点A1、B1、C1的坐标.
(3)求△A1B1C1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD⊥BC,EF⊥BC,垂足分别为D、F,∠2+∠3=180°,试说明:∠GDC=∠B.请补充说明过程,并在括号内填上相应的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com