精英家教网 > 初中数学 > 题目详情

【题目】把宽为2cm 的刻度尺在圆O上移动,当刻度尺的一边EF与圆O相切于A时,另一边与圆的两个交点处的度刻恰好为“2”(C点)和“8”(B点)(单位:cm ),则该圆的半径是(
A.3 cm
B.3.25 cm
C.2 cm
D.4 cm

【答案】B
【解析】解:连接OA交BC于点E,

设OB=r,

∵AB=8﹣2=6cm,OD⊥AB,

∴BE= AB= ×6=3cm,

在Rt△BOE中,

OE2+BE2=OB2,即(r﹣2)2+9=r2

解得r= =3.25cm.

故选B.

【考点精析】关于本题考查的勾股定理的概念和垂径定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(7分)如图,EF//AD, .求证:∠DGA+∠BAC=180°.请将说明过程填写完成.

证明:∵EF//AD,(已知)

_____(_____________________________).

又∵______

________________________).

∴AB//______(____________________________)

∴∠DGA+∠BAC=180°(_____________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明从点O出发,前进5m后向右转15°,再前进5m后又向右转15°这样一直下去,直到他第一次回到出发点O为止,他所走的路径构成了一个多边形.

1)小明一共走了多少米?

2)这个多边形的内角和是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上三点MON对应的数分别为﹣204,点P为数轴上任意一点,其对应的数为x

1)如果点P到点MN的距离相等,则x   

2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.

3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某化工厂从2015年开始节能减排,控制二氧化硫的排放.如图分别是该厂20152018年二氧化硫排放量(单位:吨)的两幅不完整的统计图,根据图中信息回答下列问题.

(1)求该厂20152018年二氧化硫排放总量;

(2)把图中折线统计图补充完整.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50x100,并制作了频数分布直方图,如图.

根据以上信息,解答下列问题:

(1)请补全频数分布直方图;

(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80x90的选手中应抽多少人?

(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD垂直平分线段AC,∠BCD=∠ADF,AF⊥AC

(1)证明:四边形ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.

(1)求出数轴上B点对应的数及AC的距离.

(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.

①当P点在AB之间运动时,则BP=   .(用含t的代数式表示)

②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.

③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数

查看答案和解析>>

同步练习册答案