【题目】甲、乙两名队员参加设计训练,成绩分别被制成下列两个统计图:
根据以上信息,整理分析数据如下:
平均数(环) | 中位数(环) | 众数(环) | 方差 | |
甲 | ||||
乙 |
(1)表格中 , , ;
(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩,若选派其中一名参赛,你认为应选哪名队员?
(3)如果乙再射击次,命中环,那么乙的射击成绩的方差 .(填“变大”“变小”或“不变”)
【答案】(1)7;7.5;7(2)乙,理由见解析;(3)变小.
【解析】
(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;
(2)结合平均数和中位数、众数、方差三方面的特点进行分析;
(3)根据方差公式即可求解判断.
(1)甲的平均成绩a==7(环),
甲的成绩的众数c=7(环),
∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,
∴乙射击成绩的中位数b==7.5(环),
故答案为7;7.5;7
(2)从平均成绩看甲、乙二人的成绩相等均为7环,
从中位数看甲射中7环以上的次数小于乙,
从众数看甲射中7环的次数最多而乙射中8环的次数最多,
从方差看甲的成绩比乙的成绩稳定;
综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大;
(3)乙再射击次,命中环,那么乙的射击成绩的方差为:
×[(37)2+(47)2+(67)2+3×(77)2+3×(87)2+(97)2+(107)2]
=×(16+9+1+3+4+9)
≈3.8.
故方差变小
故答案为:变小.
科目:初中数学 来源: 题型:
【题目】如图,在7×7网格中,每个小正方形的边长都为1.
(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;
(2)△ABC的面积为______;
(3)判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线的解析表达式为,且与轴交于点.直线经过点,直线交于点.
(1)求点的坐标;
(2)求直线的解析表达式;
(3)在轴上求作一点,使的和最小,直接写出的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c)
(1)用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2;
(2)用这样的两个三角形构造图3的图形,你能利用这个图形证明出题(1)的结论吗?如果能,请写出证明过程;
(3)当a=3,b=4时,将其中一个直角三角形放入平面直角坐标系中,使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合(如图4中Rt△AOB的位置).点C为线段OA上一点,将△ABC沿着直线BC翻折,点A恰好落在x轴上的D处.
①请写出C、D两点的坐标;
②若△CMD为等腰三角形,点M在x轴上,请直接写出符合条件的所有点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,,那么成立吗?为什么?下面是小丽同学进行的推理,请你将小丽同学的推理过程补充完整.
解:成立,理由如下:
(已知)
① (同旁内角互补,两条直线平行)
(② )
又(已知),(等量代换)
(③ )
(④ ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长为( )
A.4cmB.6cmC.8cmD.以上都不对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, BD 是△ABC 的角平分线, AE⊥ BD ,垂足为 F ,若∠ABC=35°,∠ C=50°,则∠CDE 的度数为( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E,F是正方形ABCD外接圆上的两个点,且EC∥BF,AD与BF的延长线交于点P.
(1)求∠EBF的度数;
(2)求证:BPBE=AB2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com