精英家教网 > 初中数学 > 题目详情

【题目】如图,已知RtABC中,ACB=90°CA=CBDAC上一点,EBC的延长线上,且CE=CD,试猜想BDAE的关系,并说明你猜想的正确性.

【答案】猜想:BD=AE BDAE

【解析】

猜想:BD=AE ,BD⊥AE,先证明△BDC≌△AEC得出BD=AE,∠CBD=∠CAE,从而得出∠BFE=90°,即BF⊥AE.

解:猜想:BD=AE BDAE

理由:延长BDAE于点F

∵∠ACB=90°,

∴∠ACE=∠BCD=90°.

BC=ACCD=CE

∴△BDC≌△AEC(HL).

BD=AE

∴∠CBD=∠CAE

CAE+∠E=90°.

∴∠EBF+∠E=90°.

∴∠BFE=90°,∴BFAE,即BDAE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点OOE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】七年级(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数统计表,并绘制频数直方图.

(3)班“绿色奥运”知识竞赛成绩频数统计表

分数段/

组中值/

频数/

频率

49.5~59.5

54.5

a

0.050

59.5~69.5

64.5

9

0.225

69.5~79.5

74.5

10

0.250

79.5~89.5

84.5

14

0.350

89.5~99.5

94.5

5

b

(3)班“绿色奥运”知识竞赛成绩频数直方图

(1)频数统计表中a=_____b=______

(2)把频数直方图补充完整;

(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元. 已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB=4,C是⊙O上一点,连接OC.过点C作CD⊥AB,垂足为D,过点B作BM∥OC,在射线BM上取点E,使BE=BD,连接CE.
(1)当∠COB=60°时,直接写出阴影部分的面积;
(2)求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF.若∠EAF=70°,那么∠BCF=度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某地区5000名九年级学生体育成绩状况,随机抽取了若干名学生进行测试,将成绩按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题
(1)在这次抽样调查中,一共抽取了名学生;
(2)请把条形统计图补充完整;
(3)请估计该地区九年级学生体育成绩为B的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y= x2经过点A(x1 , y1)、C(x2 , y2),其中x1、x2是方程x2﹣2x﹣8的两根,且x1<x2 , 过点A的直线l与抛物线只有一个公共点

(1)求A、C两点的坐标;
(2)求直线l的解析式;
(3)如图2,点B是线段AC上的动点,若过点B作y轴的平行线BE与直线l相交于点E,与抛物线相交于点D,过点E作DC的平行线EF与直线AC相交于点F,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠C=90°,D是AC的中点,E是AB的中点,作EF⊥BC于F,延长BC至G,使CG=BF,连接CE、DE、DG.
(1)如图1,求证:四边形CEDG是平行四边形
(2)如图2,连接EG交AC于点H,若EG⊥AB,请直接写出图2中所有长度等于 GH的线段.

查看答案和解析>>

同步练习册答案