【题目】如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.
(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.
【答案】(1)D(6,4);y=﹣x2+x+4;(2);(3)当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12
【解析】试题分析:(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.
试题解析:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).
∴设抛物线的解析式为y=a(x+3)(x﹣9), ∵C(0,4)在抛物线上, ∴4=﹣27a,
∴a=﹣, ∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,
∵CD垂直于y轴,C(0,4) ∴﹣x2+x+4=4, ∴x=6, ∵D(6,4),
(2)如图1, ∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,), ∴FH=,
∵GH∥A1O1, ∴, ∴, ∴GH=1,
∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,
∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.
(3)①当0<t≤3时,如图2, ∵C2O2∥DE, ∴, ∴, ∴O2G=t,
∴S=S△OO2G=OO2×O2G=t×t=t2,
②当3<t≤6时,如图3, ∵C2H∥OC, ∴, ∴, ∴C2H=(6﹣t),
∴S=S四边形A2O2HG=S△A2O2C2﹣S△C2GH=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12
∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.
科目:初中数学 来源: 题型:
【题目】如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在弧AB的中点,连接AF并延长与CB的延长线相交于点G,连接OF.
(1)求证:OF=BG;
(2)若AB=4,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣(x﹣1)2+k上有点(﹣1,y1)、(0,y2)、(2,y3),那么有( )
A.y1<y2=y3
B.y1=y3<y2
C.y1=y3>y2
D.y1>y2=y3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为( )
A.146×107
B.1.46×107
C.1.46×109
D.1.46×1010
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,平行于x轴的直线与抛物线y=ax(a>0)相交于A、B两点.设点B的横坐标为m(m>0).
(1)求AB的长(用含m的代数式表示).
(2)如图②,点C在直线AB上,点C的横坐标为2m.若a=1,m=2,求顶点在x轴上且经过B、C两点的抛物线的顶点坐标.
(3)点D在直线AB上,BD=2AB,过O、B、D三点的抛物线的顶点为P,其对应函数的二次项系数为a1.
①求的值.
②当m=2,△BPD为等腰直角三角形,直接写出a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com