【题目】如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(-1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.
(1)求该二次函数的解析式及点C的坐标;
(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.
(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.
【答案】(1)C(0,-4).(2)存在.点E的坐标为(-,0)或(-,0)或(-1,0)或(7,0).(3)四边形APDQ为菱形,D点坐标为(-,-).
【解析】
试题分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.
(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.
(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.
试题解析:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(-1,0),
∴,解得,
∴y=x2-x-4.
∴C(0,-4).
(2)存在.
如图1,过点Q作QD⊥OA于D,此时QD∥OC,
∵A(3,0),B(-1,0),C(0,-4),O(0,0),
∴AB=4,OA=3,OC=4,
∴AC==5,
∵当点P运动到B点时,点Q停止运动,AB=4,
∴AQ=4.
∵QD∥OC,
∴,
∴,
∴QD=,AD=.
①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,
设AE=x,则EQ=x,DE=AD-AE=|-x|,
∴在Rt△EDQ中,(-x)2+()2=x2,解得 x=,
∴OA-AE=3-=-,
∴E(-,0),
说明点E在x轴的负半轴上;
②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,
∵ED=AD=,
∴AE=,
∴OA-AE=3-=-,
∴E(-,0).
③当AE=AQ=4时,
1.当E在A点左边时,
∵OA-AE=3-4=-1,
∴E(-1,0).
2.当E在A点右边时,
∵OA+AE=3+4=7,
∴E(7,0).
综上所述,存在满足条件的点E,点E的坐标为(-,0)或(-,0)或(-1,0)或(7,0).
(3)四边形APDQ为菱形,D点坐标为(-,-).理由如下:
如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,
∵AP=AQ=t,AP=DP,AQ=DQ,
∴AP=AQ=QD=DP,
∴四边形AQDP为菱形,
∵FQ∥OC,
∴,
∴,
∴AF=t,FQ=t,
∴Q(3-t,-t),
∵DQ=AP=t,
∴D(3-t-t,-t),
∵D在二次函数y=x2-x-4上,
∴-t=(3-t)2-(3-t)-4,
∴t=,或t=0(与A重合,舍去),
∴D(-,-).
科目:初中数学 来源: 题型:
【题目】已知点A(-3,y1),B(-1,y2),C(2,y3)在抛物线y= x2上,则y1,y2,y3的大小关系系是__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市一中学举行了“中国梦校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:
(1)C等级对应扇形的圆心角为 度;
(2)学校欲从获A等级的学生中随机选取2人参加市演讲比赛,请利用列表法或树形图法求获A等级的小明参加市演讲比赛的概率.(假设小明用A1表示,其他三人分别用A2、A3、A4表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有11个互不相同的数,下面哪种方法可以不改变它们的中位数( )
A. 将每个数加倍 B. 将最小的数增加任意值
C. 将最大的数减小任意值 D. 将最大的数增加任意值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com