精英家教网 > 初中数学 > 题目详情

【题目】已知坐标平面内的点A32),B13),C(﹣1,﹣6),D2a4a4)中只有一点不在直线l上,则这一点是(  )

A.AB.BC.CD.D

【答案】B

【解析】

先求出直线AB和直线AC的解析式,再把点D2a4a-4)分别代入看是否符合即可.

解:设直线ABy=kx+b

把点A32),B13)代入得

解得:

即直线AB为:

x=2a时,

可知,点D不在此函数图象上;

设直线ACy=mx+n

把点A32),C-1-6)代入得

解得

即直线AC为:y=2x-4

x=2a时,y=2×2a-4=4a-4可知,点D在此函数图象上;

A32),C-1-6),D2a4a-4)在一条直线l上,点B不在直线l上,

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,yx成反比例).

1)根据图象分别求出血液中药物浓度上升和下降阶段yx之间的函数关系式.

2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,的垂直平分线交于点,交于点

1)若,求的长;

2)若,求证:是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设a,b是任意两个实数,规定a与b之间的一种运算“⊕”为:a⊕b=

例如:1⊕(﹣3)==﹣3,(﹣3)⊕2=(﹣3)﹣2 =﹣5,

(x2+1)⊕(x﹣1)=(因为x2+1>0)

参照上面材料,解答下列问题:

(1)2⊕4=  ,(﹣2)⊕4=  

(2)若x>,且满足(2x﹣1)⊕(4x2﹣1)=(﹣4)⊕(1﹣4x),求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AC,AE=AF,BECF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是(  )

A. B. C. D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线是第一、三象限的角平分线.

1)由图观察易知A02)关于直线l的对称点A′的坐标为(20),请在图中分别标明B53)、C-25)关于直线l的对称点B′C′的位置,并写出他们的坐标:______________________

2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为___________(不必证明);

(3)已知两点,试在直线L上画出点Q,使点QDE两点的距离之和最小,求QD+QE的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B、∠C的平分线BECD相交于点F

(1)ABC40°,∠A60°,求∠BFD的度数;

(2)直接写出∠A与∠BFD的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点PBC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③2S四边形AEPF=SABC;④BE+CF=EF.上述结论中始终正确的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下表是二次函数y=ax2+bx+c的部分x,y的对应值:

x

1

0

1

2

3

y

2

1

2

1

2

1)此二次函数图象的顶点坐标是

2)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是

查看答案和解析>>

同步练习册答案