【题目】如图8,在中, , 于, 于D.
(1)求证:△ADC≌△CEB. (2) ,求BE的长度.
【答案】(1)证明见解析; (2)2cm.
【解析】分析:(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD-DE.
解析:
(1)证明:如图,∵AD⊥CE,∠ACB=90°,
∴∠ADC=∠ACB=90°,
∴∠BCE=∠CAD(同角的余角相等).
在△ADC与△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.
如图,∵CD=CEDE,
∴BE=ADDE=53=2(cm),即BE的长度是2cm.
科目:初中数学 来源: 题型:
【题目】把下列各数填入相应的集合内:+8.5,-3,0.3,0,-3.4,12,-9,4,-1.2,-2.
(1)正数集合:{___________…};
(2)整数集合:{___________…};
(3)非正整数集合:{_____________…};
(4)负分数集合:{ ________________…}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解方程
(1)(x-2)(x+3)=-4 (公式法) (2)2x2+4x+1=25(配方法)
(3)3(x-5)2=x-5 (4)(x+3)2=(3x-5)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.
(1)当t=1时,PD=2AC,请求出AP的长;
(2)当t=2时,PD=2AC,请求出AP的长;
(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;
(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:
(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;
(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节约用水,某市决定调整居民用水收费方法,规定如果每户每月用水不超过10吨,每吨水收费2元,如果每户每月用水超过10吨,则超过部分每吨水收费2.5元;小红看到这种收费方法后,想算算她家每月的水费:
(1)如果小红家每月用水8吨,则水费是 元;如果小红家每月用水20吨,则水费是 元.
(2)如果字母表示小红家每月用水的吨数,那么小红家每月的水费该如何用的代数式表示呢?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com