精英家教网 > 初中数学 > 题目详情

【题目】在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.

(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是____________,位置关系是____________

(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;

(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.

【答案】(1)AG=EG,AG⊥EG(2)见解析(3)2

【解析】

试题分析:(1)如图1,由平移得,EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵CF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.故答案为AG=EG,AG⊥EG.

(2)(1)中的结论仍然成立,

证明:如图2,由平移得,EF=AD,∵BD是正方形的对角线,∴∠ADB=∠CDB=45°,∵CF⊥BD,∴∠DGF=90°,∴∠GFD+∠CBD=90°,∴∠DFG=45°,∴GD=GF,在△AGD和△EGF中,,∴△AGD≌△EGF∴AG=EG,∠AGD=∠EGF,∴∠AGE=∠AGD+∠DGE=∠EGF+DGE=90°,∴AG⊥EG.

(3)由(1)有,AG=CG,AG⊥EG,∴∠GEA=45°,∵∠AGF=120°,∴∠AGB=∠CGB,=30°,∴∠FGE=∠CGB=∠CGE=30°,∴∠CEG=75°,∴∠AED=30°,在Rt△ADE中,AD=2,∴DE=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,CDAB,垂足为D,点EBC上,EFAB,垂足为F.

(1) CDEF平行吗?为什么?

(2)如果∠1=2,且∠3=115°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙OADBC的延长线相交于点EABDC的延长线相交于点F.若∠EF=80°,则∠A____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,B=30°,CD,CE分别是AB边上的中线和高.

(1)求证:AE=ED;

(2)若AC=2,求CDE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线过点 为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点PN

(1)求直线AB的解析式和抛物线的解析式;

(2)如果点PMN的中点,那么求此时点N的坐标;

(3)如果以BPN为顶点的三角形与相似,求点M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在中,上一动点,以为斜边作于点,且.

1)如图①,若平分,求的长

2)如图②,连接并延长交的延长线于点,过点,求证.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点Aa﹣2b2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为(  )

A. ﹣37 B. ﹣17 C. ﹣410 D. 010

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.

(1)求出y与x的函数关系式;

(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?

(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在新修的花园小区中,有一条“Z”字形绿色长廊ABCD,如图,AB∥CD,在ABBCCD三段绿色长廊上各修建一凉亭EMF,且BE=CFMBC的中点,EMF在一条直线上.若在凉亭MF之间有一池塘,在用皮尺不能直接测量的情况下,你能知道MF之间的距离吗?试说明理由.

查看答案和解析>>

同步练习册答案