【题目】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时 + 的值;
②试说明无论k取何值, + 的值都等于同一个常数.
【答案】
(1)
解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),
∴ ,
解得 ,
所以,抛物线的解析式为y= x2﹣1;
(2)
证明:设点A的坐标为(m, m2﹣1),
则AO= = m2+1,
∵直线l过点E(0,﹣2)且平行于x轴,
∴点M的纵坐标为﹣2,
∴AM= m2﹣1﹣(﹣2)= m2+1,
∴AO=AM;
(3)
①k=0时,直线y=kx与x轴重合,点A、B在x轴上,
∴AM=BN=0﹣(﹣2)=2,
∴ + = + =1;
②k取任何值时,设点A(x1, x12﹣1),B(x2, x22﹣1),
则 + = ,
联立 ,
消掉y得,x2﹣4kx﹣4=0,
由根与系数的关系得,x1+x2=4k,x1x2=﹣4,
所以,x12+x22=(x1+x2)2﹣2x1x2=16k2+8,
x12x22=16,
∴ + = =1,
∴无论k取何值, + 的值都等于同一个常数1.
【解析】(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入 + 计算即可得解;②设点A(x1 , x12﹣1),B(x2 , x22﹣1),然后表示出 + ,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2 , x12 , 并求出x12+x22 , x12x22 , 然后代入进行计算即可得解.
【考点精析】根据题目的已知条件,利用二次函数的图象的相关知识可以得到问题的答案,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为( )
A.5
B. πcm2
C. πcm2
D.5πcm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市居民使用自来水按如下标准收费(水费按月缴纳):
(1)当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;
(2)设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费________元(用含a、n的整式表示);
(3)当a=2时,甲、乙两用户一个月共用水40m3 ,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3 ,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4厘米,动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿拆线BC-CD以2厘米/秒的速度匀速移动。点P、Q同时出发,当点P停止运动,点Q也随之停止。联结AQ交BD于点E。设点P运动时间为t秒。
(1)用t表示线段PB的长;
(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;
(3)当t为何值时,线段P、Q之间的距离为2cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以点B为旋转中心,在平面直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B′;
(2)写出点A′,C′,D′的坐标;
(3)求出线段BA旋转到B′A′时所扫过的扇形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是( )
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是( )
A.1
B.
C.
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com