【题目】“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:
(1)扇形统计图中玉兰所对的圆心角为 ,并补全条形统计图;
(2)该区今年共种植月季8000株,成活了约 株;
(3)园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
【答案】(1)72°,见解析;(2)7280;(3).
【解析】
(1)根据题意列式计算,补全条形统计图即可;
(2)根据题意列式计算即可;
(3)画树状图得出所有等可能的情况数,找出选到成活率较高的两类树苗的情况数,即可求出所求的概率.
(1)扇形统计图中玉兰所对的圆心角为360°×(1-40%-15%-25%)=72°
月季的株数为2000×90%-380-422-270=728(株),
补全条形统计图如图所示:
(2)月季的成活率为
所以月季成活株数为8000×91%=7280(株).
故答案为:7280.
(3)由题意知,成活率较高的两类花苗是玉兰和月季,玉兰、月季、桂花、腊梅分别用A、B、C、D表示,画树状图如下:
所有等可能的情况有12种,其中恰好选到成活率较高的两类花苗有2种.
∴P(恰好选到成活率较高的两类花苗)
科目:初中数学 来源: 题型:
【题目】如图,,,垂足分别为、,,是的中点,,交于点.下列结论:①;②垂直平分;③;④;⑤.其中正确的是( )
A.①②③B.①③⑤C.①②④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,将矩形对折,得到折痕;沿着折叠,点的对应点为与的交点为;再沿着折叠,使得与重合,折痕为,此时点的对应点为.下列结论:①是直角三角形:②点在同一条直线上;③;④;⑤点是的外心,其中正确的个数为( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP=5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推进生态文明建设,甲、乙两工程队同时为崂山区的两条绿化带铺设草坪.两队所铺设草坪的面积(米)与施工时间(时)之间关系的近似可以用此图象描述.请结合图象解答下列问题:
(1)从工作2小时开始,施工方从乙队抽调两人对草坪进行灌溉,乙队速度有所降低,求乙队在工作2小时后与的函数关系式;
(2)求乙队降速后,何时铺设草坪面积为甲队的?
(3)乙队降速后,甲乙两队铺设草坪速度之比为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2分别是的网格,网格中每个小正方形的边长均为1,、两点在小正方形的顶点上,请在图1、图2中各取一点(点必须在小正方形的顶点上),使以、、为顶点的三角形分别满足以下要求:
(1)在图1中画一个,使是以为斜边的直角三角形,且;
(2)在图2中画一个,使为等腰三角形,且,直接写出的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx-3a-5经过点A(2,5)
(1)求出a和b之间的数量关系.
(2)已知抛物线的顶点为D点,直线AD与y轴交于(0,-7)
①求出此时抛物线的解析式;
②点B为y轴上任意一点且在直线y=5和直线y=-13之间,连接BD绕点B逆时针旋转90°,得到线段BC,连接AB、AC,将AB绕点B顺时针旋转90°,得到线段BH.截取BC的中点F和DH的中点G.当点D、点H、点C三点共线时,分别求出点F和点G的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com